181
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells

, , , &
Pages 92-110 | Received 02 Apr 2014, Accepted 29 Oct 2014, Published online: 28 Nov 2014

References

  • Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA. Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol. Histopathol. 2007;22:1033–1041.
  • Williamson AK, Chen AC, Sah RL. Compressive properties and function–composition relationships of developing bovine articular cartilage. J. Orthop. Res. 2001;19:1113–1121.10.1016/S0736-0266(01)00052-3
  • Freemont AJ, Watkins A, Le Maitre C, Jeziorska M, Hoyland JA. Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J. Pathol. 2002;196:374–379.10.1002/(ISSN)1096-9896
  • Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, Shapiro IM. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: Implications for cell-based transplantation therapy. Spine. 2004;29:2627–2632.10.1097/01.brs.0000146462.92171.7f
  • Humzah MD, Soames RW, Human intervertebral disc: structure and function. Anat. Rec. 1988;220:337–356. 10.1002/(ISSN)1097-0185
  • Cats-Baril WL, Frymoyer JW. Identifying patients at risk of becoming disabled because of low-back-pain: the vermont rehabilitation engineering center predictive model. Spine. 1991;16:605–607.10.1097/00007632-199106000-00001
  • Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine. 1995;20:1307–1314.
  • Boxberger JI, Sen S, Yerramalli CS, Elliott DM. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J. Orthop. Res. 2006;24:1906–1915.10.1002/(ISSN)1554-527X
  • Yerramalli CS, Chou AI, Miller GJ, Nicoll SB, Chin KR, Elliott DM. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech. Model. Mechanobiol. 2007;6:13–20.10.1007/s10237-006-0043-0
  • Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials. 2008;29:85–93.10.1016/j.biomaterials.2007.09.018
  • Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J. 2008;8:888–896.10.1016/j.spinee.2007.09.011
  • Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN Jr. Autologous intervertebral disc cell implantation – A model using Psammomys obesus, the sand rat. Spine. 2002;27:1626–1633.
  • Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T. Transplantation of mesenchymal stem cells embedded in Atelocollagen® gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials. 2003;24:3531–3541.10.1016/S0142-9612(03)00222-9
  • Sato M, Asazuma T, Ishihara M, Kikuchi T, Kikuchi M, Fujikawa K. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine. 2003;28:548–553.
  • Bokori J, Tolgyesi G. Aspects, results and problems in the evaluation of the effect of trace-elements involved in the animal and human-nutrition. Magy Allatorvosok. 1980;35:44–51.
  • Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin. Orthop. Relat. Res. 2001;389:94–101.
  • Huang S, Tam V, Cheung KM, Long D, Lv M, Wang T, Zhou G. Stem cell-based approaches for intervertebral disc regeneration. Curr. Stem Cell Res Ther. 2011;6:317–326.10.2174/157488811797904335
  • Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. Biomaterials. 2006;27:4069–4078.10.1016/j.biomaterials.2006.03.017
  • Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 2006;24:707–716.10.1634/stemcells.2005-0205
  • Yang DH, Park HN, Lee JB, Heo DN, Bae MS, Kwon IK. Effect of YIGSR/PEG and IKVAV/PEG immobilized PU films on the proliferation and differentiation of PC-12 cells. Inter. J. Tissue Regen. 2011;2:119–124.
  • Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48:3464–3474.10.1002/(ISSN)1529-0131
  • Cartmell SH, Thurstan S, Gittings JP, Griffiths S, Bowen CR, Turner IG. Polarization of porous hydroxyapatite scaffolds: influence on osteoblast cell proliferation and extracellular matrix production. J. Biomed. Mater. Res. 2014;102:1047–1052.
  • Hammond JS, Gilbert TW, Howard D, Zaitoun A, Michalopoulos G, Shakesheff KM, Beckingham IJ, Badylak SF. Scaffolds containing growth factors and extracellular matrix induce hepatocyte proliferation and cell migration in normal and regenerating rat liver. J. Hepatol. 2011;54:279–287.10.1016/j.jhep.2010.06.040
  • Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing JE, Zhang L, Cordero K, Bedelbaeva K, Gourevitch D, Heber-Katz E, Badylak SF, Braunhut. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010;29:690–700.10.1016/j.matbio.2010.08.007
  • Chen D, Zhao M, Harris SE, Mi Z. Signal transduction and biological functions of bone morphogenetic proteins. Front. Biosci. 2004;9:349–358.10.2741/1090
  • Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee Bu-Kyu. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng. Part A. 2008;14:2105–2119.10.1089/ten.tea.2008.0057
  • Kim SH, Song JE, Lee D, Khang G. Demineralized bone particle impregnated poly(l-Lactide-co-Glycolide) scaffold for application in tissue-engineered intervertebral discs. J. Biomater. Sci., Polym. Ed. 2011. Epub.
  • Chesmel KD, Branger J, Wertheim H, Scarborough N. Healing response to various forms of human demineralized bone matrix in athymic rat cranial defects. J. Oral Maxillofac Surg. 1998;56:857–863.10.1016/S0278-2391(98)90015-5
  • Vadala G, Russo F, Di Martino A, Denaro V. Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering. J. Tissue Eng. Regen. Med. 2013. Epub.
  • Tim Yoon S, Su Kim K, Li J, Soo Paek J, Akamaru T, Elmer WA, Huttou WC. The effect of bone morphogenetic protein-2 of rat intervertebral disc cells in vitro. Spine. 2003;28:1773–1780.10.1097/01.BRS.0000083204.44190.34
  • Kim HE, Kim HN, Yu H, Song JE, Jeoung SY, Kim Y, Lee D, Khang G. Effect of demineralized bone particles (DBP) on cell growth and ECM secretion in PLGA/DBP hybrid scaffold for cartilage tissue engineering. Macromol. Res. 2012;20:1044–1053.10.1007/s13233-012-0148-5
  • Munirah S, Yoon SJ, Ko YK, Ha HJ, Kim SH, So JW, Ruszymah BHI, Khang G. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultures in three- dimensional poly(lactic-co-glycolic acid) scaffold. J. Biomater. Sci., Polym. Ed. 2008;19:1219–1237.
  • Shoukry M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev. 2013;22:1162–1176.10.1089/scd.2012.0597
  • Chan SC, Gantenbein-Ritter B. Intervertebral disc regeneration or repair with biomaterials and stem cell therapy – feasible or fiction? Swiss Med Wkly. 2012;142:w13598.
  • Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J. Biomed. Mater. Res. B. 2006;78:283–290.10.1002/(ISSN)1552-4981
  • Pei M, He F, Kish VL. Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng. Part A. 2011;17:3067–3076.10.1089/ten.tea.2011.0158
  • Lam MT, Nauta A, Meyer NP, Wu JC, Longaker MT. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng. Part A. 2013;19:738–747.10.1089/ten.tea.2012.0480
  • Hanamura H, Higuchi Y, Nakagawa M, Iwata H, Nogami H, Urist MR. Solubilized bone morphogenetic protein (BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin. Orthop. Relat. Res. 1980;148:281–290.
  • Diefenderfer DL, Osyczka AM, Reilly GC, Leboy PS. BMP responsiveness in human mesenchymal stem cells. Connect Tissue Res. 2003;44:305–311.
  • Rui YF, Lui PP, Lee YW, Chan KM. Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. Int Orthop. 2012;36:1099–1107.10.1007/s00264-011-1417-1
  • Lee JH, Park SJ, Chun HJ, Kim CH. Differentiation regulation by microenvironmental interaction control between stem cell and extracellular matrix, Inter J. Tissue Regen. 2010;1:1–9.
  • Preradovic A, Kleinpeter G, Feichtinger H, Balaun E, Krugluger W. Quantitation of collagen I, collagen II and aggrecan mRNA and expression of the corresponding proteins in human nucleus pulposus cells in monolayer cultures. Cell Tissue Res. 2005;321:459–464.10.1007/s00441-005-1116-6
  • Omlor GW, Nerlich AG, Lorenz H, Bruckner T, Richter W, Pfeiffer M, Gühring T. Injection of a polymerized hyaluronic acid/collagen hydrogel matrix in an in vivo porcine disc degeneration model. Eur. Spine J. 2012;21:1700–1708.10.1007/s00586-012-2291-2
  • Woo YR, Na K. Recent trends in dermal fillers based on biocompatible materials. Inter. J. Tissue Regen. 2012;3:63–68.
  • Huang W, Carlsen B, Wulur I, Rudkin G, Ishida K, Wu B, Yamaguchi DT, Miller TA. BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold. Exp. Cell Res. 2004;299:325–334.10.1016/j.yexcr.2004.04.051
  • Boyd LM, Carter AJ. Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur. Spine J, 2006;15:414–421.10.1007/s00586-006-0172-2
  • Kim SH, Yoon SJ, Choi B, Ha HJ, Rhee JM, Kim MS, Yang YS, Lee HB, Khang G. Evaluation of various types of scaffold for tissue engineered intervertebral disc. Adv. Exp. Med. Biol. 2006;585:167–181.
  • Ko YK, Kim SH, Jeong JS, Khang G. Biodisc tissue-engineered using PLGA/DBP hybrid scaffold. Polymer (Korea). 2007;31:14–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.