258
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of polyhydroxybutyrate (PHB)/γ-Fe2O3 nanocomposite film and its properties study

, , , &
Pages 793-804 | Received 31 Oct 2015, Accepted 14 Jan 2016, Published online: 20 Apr 2016

References

  • Jemal A, Siegel R, Xu JQ, et al. Cancer Statistics, 2010. CA Cancer J. Clin. 2010;60:277–300.10.3322/caac.20073
  • Dunn BK, Verma M, Umar A. Epigenetics in cancer prevention: early detection and risk assessment. Ann. N. Y. Acad. Sci. 2003;983:1–4.10.1111/nyas.2003.983.issue-1
  • Armakolas A, Panteleakou Z, Nezos A, et al. Detection of the circulating tumor cells in cancer patients. Future Oncol. 2010;6:1849–1856.10.2217/fon.10.152
  • Zieglschmid V, Hollmann C, Böcher O. Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. 2005;42:155–196.10.1080/10408360590913696
  • Young EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 2010;39:1036–1048.10.1039/b909900j
  • Gascoyne PRC, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis. 2002;23:1973–1983.10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
  • Gossett DR, Weaver WM, Mach AJ, et al. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 2010;397:3249–3267.10.1007/s00216-010-3721-9
  • Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer Cells. N. Engl. J. Med. 2008;359:366–377.10.1056/NEJMoa0800668
  • Adams AA, Okagbare PI, Feng J, et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008;130:8633–8641.10.1021/ja8015022
  • Wang ST, Wang H, Jiao J, et al. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem. Int. Ed. 2009;48:8970–8973.10.1002/anie.v48:47
  • Mansoori G, Mohazzabi P. Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead, World Review of Science. Technol. Sust. Dev. 2007;4:226–255.
  • Roveimiab Z, Mahdavian AR, Biazar E, et al. Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. J. Coll. Sci. Biotechnol. 2012;1:82–88.10.1166/jcsb.2012.1007
  • Pan Y, Du X, Zhao F, et al. Magnetic nanoparticles for the manipulation of proteins and cells. Chem. Soc. Rev. 2012;41:2912–2942.10.1039/c2cs15315g
  • Gao J, Xu B. Applications of nanomaterials inside cells. Nano Today. 2009;4:37–51.10.1016/j.nantod.2008.10.009
  • Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 2011;6:1117–1127.
  • Gu H, Tadakamalla S, Zhang X, et al. Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi walled carbon nanotubes. J. Mater. Chem. C. 2013;1:729–743.10.1039/C2TC00379A
  • Cai W, Gao T. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008;1:17–32.
  • Varanda LC, Jafelicci MJ, BeckJúnior W. Magnetic and multifunctional magnetic nanoparticles in nanomedicine: challenges and trends in synthesis and surface engineering for diagnostic and therapy applications. Biomed. Eng. Trends Mater. Sci. 2011;6:397–425.
  • Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 2004;3:66–73.10.1109/TNB.2003.820277
  • Homaeigohar S, Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials. 2014;7:1017–1045.10.3390/ma7021017
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110.10.1021/cr068445e
  • Biazar E, Zhang Z, Heidari S. Cellular orientation on micro-patterned biocompatible PHBV film. J. Paramed Sci. 2010;1:74–77.
  • Biazar E, Keshel SK. The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects. J. Biomed. Nanotechnol. 2013;9:1471–1482.10.1166/jbn.2013.1639
  • Rezaei-Tavirani M, Biazar E, AI J, et al. Fabrication of collagen-coated Poly (beta-hydroxy butyrate-cobeta-hydroxyvalerate) nanofiber by chemical; and physical methods. Orient. J. Chem. 2011;27:385–395.
  • Ai J, Heidari SK, Ghorbani F, et al. Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method; and its cellular study. J. Nanomater. 2011;2011:1–8.
  • Biazar E, Keshel SK. Chitosan–cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. ASAIO J. 2013;59:651–659.10.1097/MAT.0b013e3182a79151
  • Sahebalzamani M, Biazar E, Shahrezaei M, et al. Surface modification of PHBV nanofibrous mat by laminin protein and its cellular study. Int. J. Polym. Mater. Po. 2015;64:149–154.10.1080/00914037.2014.911179
  • Montazeri M, Rashidi N, Biazar E, et al. Compatibility of cardiac muscle cells on coated-gelatin electro-spun polyhydroxybutyrate/valerate nano fibrous film. Biosci. Biotech. Res. ASIA. 2011;8:515–521.10.13005/bbra/894
  • Biazar E, Heidari S, Sahebalzamani A, Hamidi M, Ebrahimi M. The healing effect of unrestricted somatic stem cells loaded in nanofibrous Polyhydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J. Biomater. Tiss. Eng. 2014;4:20–27.
  • Biazar E. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to Rat sciatic nerve regeneration across a 30-mm defect bridge. Cell Commun. Adhes. 2013;20:41–49.10.3109/15419061.2013.774378
  • Biazar E, Heidari Keshel S, Pouya M. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft. Cell Commun. Adhes. 2013;20:93–103.10.3109/15419061.2013.833191
  • Biazar E. Polyhydroxyalkanoates as potential biomaterials for neural tissue regeneration. Int. J. Polym Mater Po. 2014;63:898–908.10.1080/00914037.2014.886227
  • Biazar E, Heidari S, Sahebalzamani A, Heidari M. Design of oriented porous PHBV scaffold as a neural guide. Int. J. Polym Mater Po. 2014;63:753–757.
  • Biazar E, Keshel S. Gelatin-modified nanofibrous phbv tube as artificial nerve graft for rat sciatic nerve regeneration. Int. J. Polym Mater Po. 2014;63:330–336.10.1080/00914037.2013.845187
  • Zeinali R, Biazar E, Keshel S, et al. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J. 2014;60:106–114.10.1097/MAT.0000000000000025
  • Wu Y, Jiang W, Wen X, He B, Zeng X, Wang G, et al. A novel calcium phosphate ceramic–magnetic nanoparticle composite as a potential bone substitute. Biomed. Mater. 2010;5:15001. doi:10.1088/1748-6041/5/1/015001.
  • Perez RA, Patel KD, Kim HW. Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv. 2015;5:13411–13419.10.1039/C4RA12640H
  • Jegal SH, Park JH, Kim JH, Kim TH, Shin US, Kim TI, et al. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Acta Biomater. 2011;7:1609–1617.10.1016/j.actbio.2010.12.003
  • Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 2009;10:63–73.10.1038/nrm2597
  • Parkinson WC, Hanks CT. Experiments on the interaction of electromagnetic fields with mammalian systems. Biol. Bull. 1989;176(S):170–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.