524
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Silicone hydrogels grafted with natural amino acids for ophthalmological application

, , , , , & show all
Pages 1354-1368 | Received 30 Apr 2016, Accepted 13 Jun 2016, Published online: 24 Jun 2016

References

  • Alvord L, Court J, Davis T, et al. Oxygen permeability of a new type of high dk soft contact lens material. Optom. Vis. Sci. 1998;75:30–36.10.1097/00006324-199801000-00022
  • Compañ V, Andrio A, López-Alemany A, et al. Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials. 2002;23:2767–2772.10.1016/S0142-9612(02)00012-1
  • Cheng L, Muller SJ, Radke CJ. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Curr. Eye Res. 2004;28:93–108.10.1076/ceyr.28.2.93.26231
  • Maldonado-Codina C, Morgan PB. In vitro water wettability of silicone hydrogel contact lenses determined using the sessile drop and captive bubble techniques. J. Biomed. Mater. Res. A. 2007;83A:496–502.10.1002/(ISSN)1552-4965
  • Szczotka-Flynn L, Lass JH, Sethi A, et al. Risk factors for corneal infiltrative events during continuous wear of silicone hydrogel contact lenses. Invest. Ophth. Vis. Sci. 2010;51:5421–5430.10.1167/iovs.10-5456
  • Ozkan J, Willcox MDP, de la Jara PL, et al. The effect of daily lens replacement during overnight wear on ocular adverse events. Optom. Vis. Sci. 2012;89:1674–1681.10.1097/OPX.0b013e31827731ac
  • Taylor RL, Willcox MDP, Williams TJ, et al. Modulation of bacterial adhesion to hydrogel contact lenses by albumin. Optom. Vis. Sci. 1998;75:23–29.10.1097/00006324-199801000-00021
  • Willcox MDP, Holden BA. Contact lens related corneal infections. Biosci. Rep. 2001;21:445–461.10.1023/A:1017991709846
  • Thissen H, Gengenbach T, du Toit R, et al. Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials. 2010;31:5510–5519.10.1016/j.biomaterials.2010.03.040
  • Peng HT, Martineau L, Hung A. Hydrogel-elastomer composite biomaterials: 4. Experimental optimization of hydrogel-elastomer composite fibers for use as a wound dressing. J. Mater. Sci.-Mater. M. 2008;19:1803–1813.10.1007/s10856-007-3324-y
  • Paradiso P, Chu V, Santos L, et al. Effect of plasma treatment on the performance of two drug-loaded hydrogel formulations for therapeutic contact lenses. J. Biomed. Mater. Res. B. 2015;103:1059–1068.10.1002/jbm.b.v103.5
  • Beattie TK, Tomlinson A. The effect of surface treatment of silicone hydrogel contact lenses on the attachment of acanthamoeba castellanii trophozoites. Eye Contact Lens. 2009;35:316–319.10.1097/ICL.0b013e3181becce6
  • Yokota M, Shimoyama N, Fujisawa K, et al. Novel method for surface modification of silicone-containing hydrogel using addition reaction. Chem. Lett. 2011;40:1297–1299.10.1246/cl.2011.1297
  • Sun F, Li X, Xu J, et al. Improving hydrophilicity and protein resistance of silicone hydrogel by plasma induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. E-Polymers. 2011;11:463–473.
  • Sun F, Li X, Cao P, et al. Enhancing hydrophilicity and protein resistance of silicone hydrogels by plasma induced grafting with hydrophilic polymers. Chin. J. Polym. Sci. 2010;28:547–554.10.1007/s10118-010-9082-1
  • McArthur SL, McLean KM, Kingshott P, et al. Effect of polysaccharide structure on protein adsorption. Colloid Surface. B. 2000;17:37–48.10.1016/S0927-7765(99)00086-7
  • Hasuda H, Kwon OH, Kang IK, et al. Synthesis of photoreactive pullulan for surface modification. Biomaterials. 2005;26:2401–2406.10.1016/j.biomaterials.2004.07.065
  • Konno T, Hasuda H, Ishihara K, et al. Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials. 2005;26:1381–1388.10.1016/j.biomaterials.2004.04.047
  • Zhang Z, Chao T, Chen S, et al. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Chen S, Jiang S. An new avenue to nonfouling materials. Adv. Mater. 2008;20:335–338.10.1002/(ISSN)1521-4095
  • Murphy EF, Lu JR, Brewer J, et al. The reduced adsorption of proteins at the phosphoryl choline incorporated polymer−water interface. Langmuir. 1999;15:1313–1322.10.1021/la9813580
  • Lin W, Zhang J, Wang Z, et al. Development of biocompatible silicone hyrogels with high resistance to protein adsorption and bacterial adhesion. J. Control. Release. 2011;152:e224–e226.10.1016/j.jconrel.2011.09.025
  • Li W, Liu Q, Liu L. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. J. Biomat. Sci.-Polym. E. 2014;25:1730–1742.10.1080/09205063.2014.948332
  • Liu QS, Singh A, Liu LY. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules. 2013;14:226–231.10.1021/bm301646y
  • Shi Q, Su YL, Chen WJ, et al. Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. J. Membrane Sci. 2011;366:398–404.10.1016/j.memsci.2010.10.032
  • Zhi XL, Li PF, Gan XC, et al. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. J. Biomat. Sci.-Polym. E. 2014;25:1619–1628.10.1080/09205063.2014.943537
  • Hadidi M, Zydney AL. Fouling behavior of zwitterionic membranes: impact of electrostatic and hydrophobic interactions. J. Membr. Sci. 2014;452:97–103.10.1016/j.memsci.2013.09.062
  • Rosen JE, Gu FX. Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir. 2011;27:10507–10513.10.1021/la201940r
  • Azari S, Zou L. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid l-cysteine. Desalination. 2013;324:79–86.10.1016/j.desal.2013.06.005
  • Xu C, Hu X, Wang J, et al. Library of antifouling surfaces derived from natural amino acids by click reaction. ACS Appl. Mater. Interface. 2015;7:17337–17345.10.1021/acsami.5b04520
  • Don TM, King CF, Chiu WY, et al. Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohyd. Polym. 2006;63:331–339.10.1016/j.carbpol.2005.08.023
  • Yan L, Wei T. Graft copolymerization of n, n-dimethylacrylamide to cellulose in homogeneous media using atom transfer radical polymerization for hemocompatibility. J. Biomed. Sci. Eng. 2008;1:37–43.
  • Deng S, Bai R, Chen JP. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir. 2003;19:5058–5064.10.1021/la034061x
  • Su Y, Li C. Tunable water flux of a weak polyelectrolyte ultrafiltration membrane. J. Membr. Sci. 2007;305:271–278.10.1016/j.memsci.2007.08.029
  • Rojas OJ, Ernstsson M, Neuman RD, et al. Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica. Langmuir. 2002;18:1604–1612.10.1021/la0155698
  • Ying L, Kang ET, Neoh KG. Characterization of membranes prepared from blends of poly(acrylic acid)-graft-poly(vinylidene fluoride) with poly(n-isopropylacrylamide) and their temperature- and pH-sensitive microfiltration. J. Membr. Sci. 2003;224:93–106.10.1016/j.memsci.2003.07.002
  • Yu J, Su Z, Xu H, et al. One-pot approach to synthesize hyperbranched poly(thiol–ether amine) (hPtEA) through sequential “thiol–ene” and “epoxy–amine” click reactions. Polym. Chem. 2015;6:6946–6954.10.1039/C5PY00991J
  • Ng CO, Pedley DG, Tighe BJ. Polymers in contact lens applications vii. Oxygen permeability and surface hydrophilicity of poly(4-methylpent-1-ene) and related polymers. Brit. Polym. J. 1976;8:124–130.
  • Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J. Biotechnol. 2000;79:259–268.10.1016/S0168-1656(00)00242-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.