274
Views
14
CrossRef citations to date
0
Altmetric
Articles

Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin

, , , &
Pages 1413-1433 | Received 30 Dec 2015, Accepted 27 Jun 2016, Published online: 29 Jul 2016

References

  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.
  • Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003;2:347–360.10.1038/nrd1088
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today. 2006;11:812–818.10.1016/j.drudis.2006.07.005
  • Chacko RT, Ventura J, Zhuang J, et al. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 2012;64:836–851.10.1016/j.addr.2012.02.002
  • Ryu JH, Chacko RT, Jiwpanich S, et al. Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J. Am. Chem. Soc. 2010;132:17227–17235.10.1021/ja1069932
  • Chang YQ, Yun XS, Han C, et al. Thermosensitive P(NIPAAm-co-PAAc-co-HEMA) nanogels conjugated with transferrin for tumor cell targeting delivery. Nanotechnology. 2008;19:275102.
  • Drapala PW, Jiang B, Chiu YC, et al. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm. Res. 2014;31:742–753.10.1007/s11095-013-1195-0
  • Singh N, Lyon LA. Synthesis of multifunctional nanogels using a protected macromonomer approach. Colloid Polym. Sci. 2008;286:1061–1069.10.1007/s00396-008-1883-1
  • Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J. Nanobiotechnol. 2007;5:1–18.
  • Zheng J, Lee HCM, bin Sattar MM, et al. Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury. Eur. J. Pharmacol. 2011;652:82–88.10.1016/j.ejphar.2010.10.082
  • Vincenzi B, Frezza AM, Santini D, et al. New therapies in soft tissue sarcoma. Expert Opin. Emerg. Drugs. 2010;15:237–248.10.1517/14728211003592108
  • Du Y, Chen W, Zheng M, et al. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials. 2012;33:7291–7299.10.1016/j.biomaterials.2012.06.034
  • Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J. Control. Release. 2012;161:628–634.10.1016/j.jconrel.2012.01.019
  • Cui H, Chen Z, Zhong S, et al. Block copolymer assembly via kinetic control. Science. 2007;317:647–650.10.1126/science.1141768
  • Wang K, Luo GF, Liu Y, et al. Redox-sensitive shell cross-linked PEG–polypeptide hybrid micelles for controlled drug release. Polym. Chem. 2012;3:1084–1090.10.1039/c2py00600f
  • Zhang CY, Yang YQ, Huang TX, et al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials. 2012;33:6273–6283.10.1016/j.biomaterials.2012.05.025
  • Ding J, Chen J, Li D, et al. Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. J. Mater. Chem. B. 2012;1:69–81.
  • Ding J, He C, Xiao C, et al. pH-responsive drug delivery systems based on clickable poly (L-glutamic acid)-grafted comb copolymers. Macromol. Res. 2012;20:292–301.10.1007/s13233-012-0051-0
  • Long CY, Sheng MM, He B, et al. Comparison of drug delivery properties of PEG-b-pdhpc micelles with different compositions. Chin. J. Polym. Sci. 2012;30:387–396.10.1007/s10118-012-1138-y
  • Chacko RT, Ventura J, Zhuang J, et al. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 2012;64:836–851.10.1016/j.addr.2012.02.002
  • Yuan YY, Du JZ, Song WJ, et al. Biocompatible and functionalizable polyphosphate nanogel with a branched structure. J. Mater. Chem. 2012;22:9322–9329.10.1039/c2jm30663h
  • Oh JK, Drumright R, Siegwart DJ, et al. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2008;33:448–477.10.1016/j.progpolymsci.2008.01.002
  • Yuk SH, Oh KS, Koo H, et al. Multi-core vesicle nanoparticles based on vesicle fusion for delivery of chemotherapic drugs. Biomaterials. 2011;32:7924–7931.10.1016/j.biomaterials.2011.07.017
  • Yang X, Grailer JJ, Rowland IJ, et al. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–6817.10.1021/nn101670k
  • Ding J, Xiao C, He C, et al. Facile preparation of a cationic poly (amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology. 2011;22:494012.10.1088/0957-4484/22/49/494012
  • Ding J, Xiao C, Zhuang X, et al. Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Mater. Lett. 2012;73:17–20.10.1016/j.matlet.2011.12.092
  • Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6:715–728.10.2217/nnm.11.19
  • Rihova B, Bilej M, Vetvicka V, et al. Biocompatibility of N-(2-Hydroxypropyl) methacrylamide copolymers containing adriamycin: immunogenicity and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials. 1989;10:335–342.10.1016/0142-9612(89)90075-6
  • Bloemen M, Van Stappen T, Willot P, et al. Heterobifunctional PEG ligands for bioconjugation reactions on iron oxide nanoparticles. PLoS One. 2014;9:e109475.10.1371/journal.pone.0109475
  • Medeiros SF, Santos AM, Fessi H, et al. Synthesis of biocompatible and thermally sensitive poly (N-vinylcaprolactam) nanogels via inverse miniemulsion polymerization: effect of the surfactant concentration. J. Polym. Sci. Part A: Polym. Chem. 2010;48:3932–3941.10.1002/pola.24165
  • Klinger D, Aschenbrenner EM, Weiss CK, et al. Enzymatically degradable nanogels by inverse miniemulsion copolymerization of acrylamide with dextran methacrylates as crosslinkers. Polym. Chem. 2012;3:204–216.10.1039/C1PY00415H
  • Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 1989;119:203–210.10.1016/0022-1759(89)90397-9
  • Xu J, Ni P, Mao J. Synthesis and characterization of a novel triblock copolymer containing double-hydrophilic blocks and poly (fluoroalkyl methacrylate) block via oxyanioninitiated polymerization. e-Polymers. 2006;6:195–208.
  • Shim YH, Bougard F, Coulembier O, et al. Synthesis and characterization of original 2-(dimethylamino) ethyl methacrylate/poly (ethyleneglycol) star-copolymers. Eur. Polym. J. 2008;44:3715–3723.10.1016/j.eurpolymj.2008.08.016
  • Liu J, Detrembleur C, Debuigne A, et al. Poly (acrylic acid)-block-poly (vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release. Nanoscale. 2013;5:11464–11477.10.1039/c3nr02861e
  • Bialik-Wąs K, Pielichowski K. Poly (acrylic acid-co-methyl methacrylate)/metronidazole systems: synthesis and complexation. Acta Biochim. Pol. 2013;60:835–838.
  • Xu J, Zhao WP, Wang CX, et al. Preparation of cationic polyacrylamide by aqueous two-phase polymerization. Express Polym. Lett. 2010;4:275–283.10.3144/expresspolymlett.2010.35
  • Manocha B, Margaritis A. Controlled release of doxorubicin from doxorubicin/γ-polyglutamic acid ionic complex. J. Nanomater. 2010;2010:1–9.
  • Maurer JJ, Harvey GD. Thermal degradation characteristics of poly (acrylamide-co-acrylic acid) and poly (acrylamide-co-sodium acrylate) copolymers. Thermochim. Acta. 1987;121:295–306.10.1016/0040-6031(87)80180-6
  • Silva ME, Dutra ER, Mano V, et al. Preparation and thermal study of polymers derived from acrylamide. Polym. Degrad. Stab. 2000;67:491–495.10.1016/S0141-3910(99)00149-4
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008;5:505–515.10.1021/mp800051m
  • Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 2012;64:316–326.10.1016/j.addr.2012.09.008
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today. 2006;11:812–818.10.1016/j.drudis.2006.07.005
  • Li X, Du P, Liu P. Layer-by-layer polyelectrolyte complex coated poly (methacrylic acid) nanogels as a drug delivery system for controlled release: structural effects. RSC Adv. 2014;4:56323–56331.10.1039/C4RA05066E
  • Caliceti P, Salmaso S, Lante A, et al. Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerization. J. Control. Release. 2001;75:173–181.10.1016/S0168-3659(01)00380-7
  • Gebben B, van den Berg HW, Bargeman D, et al. Intramolecular crosslinking of poly (vinyl alcohol). Polymer. 1985;26:1737–1740.10.1016/0032-3861(85)90295-2
  • Oh JK, Siegwart DJ, Lee HI, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J. Am. Chem. Soc. 2007;129:5939–5945.10.1021/ja069150l
  • Oh JK, Siegwart DJ, Matyjaszewski K. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Biomacromolecules. 2007;8:3326–3331.10.1021/bm070381+
  • Behl G, Sharma M, Sikka M, et al. Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: synthesis, characterization, and antioxidant activity. J. Biomater. Sci. Polym. Ed 2013;24:865–881.10.1080/09205063.2012.723958
  • Tang H, Guo J, Sun Y, et al. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int. J. Pharm. 2011;421:388–396.10.1016/j.ijpharm.2011.10.013
  • He W, Zheng X, Zhao Q, et al. pH-triggered charge-reversal polyurethane micelles for controlled release of doxorubicin. Macromol. Biosci. 2016;16:​925–935.
  • Sharma G, Italia J, Sonaje K, et al. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J. Control. Release. 2007;118:27–37.10.1016/j.jconrel.2006.11.026
  • Chauhan B, Shimpi S, Paradkar A. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique. AAPS PharmSciTech. 2005;6:E405–E409.10.1208/pt060350
  • Zuo Q, Lu J, Hong A, et al. Preparation and characterization of PEM-coated alginate microgels for controlled release of protein. Biomed. Mater. 2012;7:035012.10.1088/1748-6041/7/3/035012
  • Kalaria D, Sharma G, Beniwal V, et al. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm. Res. 2009;26:492–501.10.1007/s11095-008-9763-4
  • Musumeci T, Ventura C, Giannone I, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 2006;325:172–179.10.1016/j.ijpharm.2006.06.023
  • Rao KM, Mallikarjuna B, Rao KK, et al. Novel thermo/pH sensitive nanogels composed from poly (N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf. B: Biointerfaces. 2013;102:891–897.
  • Bala I, Bhardwaj V, Hariharan S, et al. Design of biodegradable nanoparticles: a novel approach to encapsulating poorly soluble phytochemical ellagic acid. Nanotechnology. 2005;16:2819–2822.10.1088/0957-4484/16/12/014
  • Bajpai A, Rajpoot M. Release and diffusion of sulfamethoxazole through acrylamide-based hydrogel. J. Appl. Polym. Sci. 2001;81:1238–1247.10.1002/(ISSN)1097-4628
  • Jaraswekin S, Prakongpan S, Bodmeier R. Effect of poly (lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles. J. Microencapsul. 2007;24:117–128.10.1080/02652040701233655
  • Shafie MAA, Fayek HHM. Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery. J. Clin. Exp. Ophthalmol. 2013;4:1000273.
  • Liu Z, Cheung R, Wu XY, et al. A study of doxorubicin loading onto and release from sulfopropyl dextran ion-exchange microspheres. J. Control. Release. 2001;77:213–224.10.1016/S0168-3659(01)00473-4
  • Behl G, Iqbal J, O’Reilly NJ, et al. Synthesis and characterization of poly (2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharma. Res. 2016;33:​1638–1648.
  • Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mat. Sci. Eng. C. 2010;30:484–490.10.1016/j.msec.2010.01.006
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater. 2007;3:233–242.10.1016/j.actbio.2006.10.006
  • Kitaeva MV, Melik-Nubarov NS, Menger FM, et al. Doxorubicin-poly (acrylic acid) complexes: interaction with liposomes. Langmuir. 2004;20:6575–6579.10.1021/la0497144
  • Menozzi M, Valentini L, Vannini E, et al. Self-association of doxorubicin and related compounds in aqueous solution. J. Pharm. Sci. 1984;73:766–770.10.1002/jps.2600730615
  • Vitagliano V, Costantino L, Zagari A. Interaction between acridine orange and poly (styrenesulfonic acid). J. Phy. Chem. 1973;77:204–210.10.1021/j100621a012
  • Peyratout C, Donath E, Daehne L. Electrostatic interactions of cationic dyes with negatively charged polyelectrolytes in aqueous solution. J. Photochem. Photobiol. A. 2001;142:51–57.10.1016/S1010-6030(01)00490-7
  • Rabinowitch E, Epstein LF. Polymerization of dyestuffs in solution.thionine and methylene blue1. J. Am. Chem. Soc. 1941;63:69–78.10.1021/ja01846a011
  • Michaelis L, Granick S. Metachromasy of basic dyestuffs. J. Am. Chem. Soc. 1945;67:1212–1219.10.1021/ja01223a055
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133.10.1016/S0928-0987(01)00095-1
  • Singla AK, Mediratta DK. Influence of sodium lauryl sulphate on indomethacin release pattern from zinc-indcmethacin complex and indomethacin capsules. Drug Dev. Ind. Pharm. 1988;14:1883–1888.10.3109/03639048809151994
  • Higuchi WI. Analysis of data on the medicament release from ointments. J. Pharm. Sci. 1962;51:802–804.10.1002/jps.2600510825
  • Reddy KR, Mutalik S, Reddy S. Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech. 2003;4:480–488.10.1208/pt040461
  • Patil A, Pohane A, Darbar R, et al. Formulation and evaluation of sustained release matrix tablets of Nicorandil. Int. J. Appl. Biol. Pharm. Technol. 2011;2:242–246.
  • Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983;15:25–35.10.1016/0378-5173(83)90064-9
  • Fassihi RA, Ritschel WA. Multiple-layer, direct-compression, controlled-release system: in vitro and in vivo evaluation. J. Pharm. Sci. 1993;82:750–754.10.1002/jps.2600820715
  • Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agricul. Food Chem. 2000;48:3396–3402.10.1021/jf9913458
  • Jeong YI, Kim DH, Chung CW, et al. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly (DL-lactide-co-glycolide) copolymer. Int. J. Nanomed. 2011;6:1415–1427.10.2147/IJN
  • Ding J, Xiao C, Yan L, et al. pH and dual redox responsive nanogel based on poly (l-glutamic acid) as potential intracellular drug carrier. J. Control. Release. 2011;152:e11–e13.10.1016/j.jconrel.2011.08.091
  • Ding J, Shi F, Xiao C, et al. One-step preparation of reduction-responsive poly (ethylene glycol)-poly (amino acid)s nanogels as efficient intracellular drug delivery platforms. Polym. Chem. 2011;2:2857–2864.10.1039/c1py00360g
  • Li D, Ding JX, Tang ZH, et al. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers. Int. J. Nanomedicine. 2012;7:2687–2697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.