255
Views
5
CrossRef citations to date
0
Altmetric
Articles

Glutathione-dependent micelles based on carboxymethyl chitosan for delivery of doxorubicin

, , , , , , & show all
Pages 1824-1840 | Received 26 Apr 2016, Accepted 15 Sep 2016, Published online: 05 Oct 2016

References

  • Haeshin L, Young Sun L, Dae LK, et al. Development of disulfide core-crosslinked pluronic nanoparticles as an effective anticancer-drug-delivery system. Macromol. Biosci. 2011;11:1264–1271.
  • Accardo A, Aloj L, Aurilio M, et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int. J. Nanomed. 2014;9:1537–1557.
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. Ca-Cancer. J. Clin. 2011;61:69–90.10.3322/caac.v61:2
  • Bernal GM. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma-nanomedicine.Nanomed. Nanotechnol. Biol. Med. 2014;10:149–157.10.1016/j.nano.2013.07.003
  • Blunden BM, Hongxu L, Stenzel MH. Enhanced delivery of the RAPTA-C macromolecular chemotherapeutic by conjugation to degradable polymeric micelles. Biomacromolecules. 2013;14:4177–4188.10.1021/bm4013919
  • Chen Y, Wan Y, Wang Y, et al. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int. J. Nanomed. 2011;6:2321–2326.
  • Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr. Polym. 2003;53:355–359.10.1016/S0144-8617(03)00051-1
  • Snima KS, Jayakumar R, Unnikrishnan AG, et al. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr. Polym. 2012;89:1003–1007.10.1016/j.carbpol.2012.04.050
  • Ching-Yi C, Tae Hee K, Wen-Chung W, et al. pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials. 2013;34:4501–4509.
  • Duc TB, Andrei M, Didier D, et al. Polymer prodrug nanoparticles based on naturally occurring isoprenoid for anticancer therapy. Biomacromolecules. 2013;14:2837–2847.
  • Du X, Xiong L, Dai S, et al. γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for nnhanced cellular uptake and intracellular GSH-responsive release. Adv. Healthc. Mater. 2015;4:771–781.10.1002/adhm.v4.5
  • Gao Q, Han X, Zhu J, et al. A polymer–drug conjugate for doxorubicin: synthesis and biological evaluation of pluronic F127-doxorubicin amide conjugates. J. Appl. Polym. Sci. 2011;124:4953–4960.
  • Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010;624:25–37.10.1007/978-1-60761-609-2
  • Hu X, Tian J, Liu T, et al. Photo-triggered release of caged camptothecin prodrugs from dually responsive shell cross-linked micelles. Macromolecules. 2013;46:6243–6256.10.1021/ma400691j
  • Hui T, Chen D, Jiang M. A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers. Macromolecules. 2005;38:5834–5837.10.1021/ma050435c
  • Zhang J, Ma P. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery. Angew. Chem. 2009;48:964–968.10.1002/anie.v48:5
  • Jin Q, Liu X, Liu G, et al. Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer. 2010;51:1311–1319.10.1016/j.polymer.2010.01.026
  • Jun Z, Alan K, Lipshultz SE, et al. Sex-related differences in mast cell activity and doxorubicin toxicity: a study in spontaneously hypertensive rats. Toxicol. Pathol. 2014;42:361–375.
  • Ki Young C, Hyunjin C, Kyung Hyun M, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials. 2009;31:106–114.
  • Laurence Z, Lionel A, FrancOis G, et al. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008;8:59–73.
  • Lebhardt T, Roesler S, Beck-Broichsitter M, et al. Polymeric nanocarriers for drug delivery to the lung. J. Drug Deliv. Sci. Technol. 2010;20:171–180.10.1016/S1773-2247(10)50026-1
  • Li X, Yang X, Lin Z, et al. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. . Eur. J. Pharm. Sci. Official J. Eur. Fed. Pharm. Sci. 2015;76:95–101.10.1016/j.jphs.2015.02.013
  • Lu D, Wen X, Liang J, et al. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J. Biomed. Mater. Res. B. 2009;89:177–183.10.1002/jbm.b.v89b:1
  • Martínez A, Iglesias I, Lozano R, et al. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr. Polym. 2011;83:1311–1321.10.1016/j.carbpol.2010.09.038
  • Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React. Funct. Polym. 2011;71:227–234.10.1016/j.reactfunctpolym.2010.10.009
  • Patel KJ, Trédan O, Tannock IF. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. Cancer Chemother. Pharmacol. 2013;72:127–138.10.1007/s00280-013-2176-z
  • Wang Q, Zhong YJ, Yuan JP, et al. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: a preclinical study. J. Transl. Med. 2013;11:192.10.1186/1479-5876-11-192
  • Ranucci E, Annunziata SR. Poly(amidoamine) conjugates with disulfide-linked cholesterol pendants self-assembling into redox-sensitive nanoparticles. Biomacromolecules. 2008;9:2693–2704.10.1021/bm800655s
  • Erkki R, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J. Cell. Biol. 2010;188:759–768.
  • Sethuraman VA, Lee MC, Bae YH. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm. Res. 2008;25:657–666.10.1007/s11095-007-9480-4
  • Shi M, Ho K, Keating A, et al. Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv. Funct. Mater. 2009;19:1689–1696.10.1002/adfm.v19:11
  • Simon H, Julien N, Andrei M, et al. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew. Chem. Int. Ed. 2013;52:1722–1726.
  • Szwed M, Kania KD, Jozwiak Z. Toxicity of doxorubicin-transferrin conjugate is connected to the modulation of Wnt/β-catenin pathway in human leukemia cells. Leuk. Res. 2015;39:1096–1102.10.1016/j.leukres.2015.07.003
  • Tao Y. Galactosylated biodegradable poly(Ԑ-caprolactone-co-phosphoester) random copolymer nanoparticles for potent hepatoma-targeting delivery of doxorubicin. Polym. Chem. 2014;5:3443–3452.10.1039/c4py00024b
  • Thambi T, Saravanakumar G, Chu JU, et al. Synthesis and physicochemical characterization of reduction-sensitive block copolymer for intracellular delivery of doxorubicin. Macromol. Res. 2013;21:100–107.10.1007/s13233-013-1014-9
  • Wang XQ, Zhang Q. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2012;82:219–229.10.1016/j.ejpb.2012.07.014
  • Wang H, Zhao Y, Wu Y, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–8290.10.1016/j.biomaterials.2011.07.032
  • Wang Y, Wei X, Zhang C, et al. Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Ther. Deliv. 2010;1:273–287.10.4155/tde.10.24
  • Wang H, Xu F, Li D, et al. Bioinspired phospholipid polymer prodrug as a pH-responsive drug delivery system for cancer therapy. Polym. Chem. 2013;4:2004–2010.10.1039/c2py20981k
  • Wu CP, Hsieh CH, Wu YS. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm. 2011;8:1996–2011.10.1021/mp200261n
  • Xue YN, Huang ZZ, Zhang JT, et al. Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-dl-lactide) to form micelles for pH-responsive drug delivery. Polymer. 2009;50:3706–3713.10.1016/j.polymer.2009.05.033
  • Yu Z, Sun X, Song H, et al. Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides[J]. Mater. Sci. Appl. 2015;6:591–604.
  • Xie YT, Du YZ, Yuan H, et al. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int. J. Nanomed. 2012;7:3235–3244.
  • Xiuli H, Xiabin J. Biodegradable amphiphilic polymer-drug conjugate micelles. Expert. Opin. Drug. Del. 2009;6:1079–1090.
  • Xu Z, Wang D, Xu S, et al. Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem. Asian J. 2014;9:199–205.10.1002/asia.201301030
  • Yang Y, Dayi P, Kui L, et al. Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials. 2013;34:8430–8443.10.1016/j.biomaterials.2013.07.037
  • Ren TB, Feng Y, Zhang ZH, et al. Shell-sheddable micelles based on star-shaped poly(ɛ-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellular drug release[J]. Soft Matter. 2011;6:2329–2331.10.1039/c1sm05020f
  • Chen D, Bobko AA, Gross AC, et al. Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione. PLoS One. 2014;10:e107511–e107511.10.1371/journal.pone.0107511
  • Li M, Tang Z, Lv S, et al. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials. 2014;35:3851–3864.10.1016/j.biomaterials.2014.01.018
  • Sun Y, Zou W, Bian A, et al. Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma. Biomaterials. 2013;34:6818–6828.10.1016/j.biomaterials.2013.05.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.