773
Views
18
CrossRef citations to date
0
Altmetric
Articles

Poly(butylene adipate-co-terephthalate) scaffolds: processing, structural characteristics and cellular responses

, , &
Pages 1841-1859 | Received 13 Mar 2016, Accepted 20 Sep 2016, Published online: 10 Oct 2016

References

  • Çetin D, Kahraman AS, Gümüşderelioğlu M. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. J. Biomater. Sci., Polym. Ed. 2011;22:1157–1178.
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 2004;32:477–486.10.1023/B:ABME.0000017544.36001.8e
  • Wu S, Liu X, Yeung KWK, et al. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. 2014;80:1–36.10.1016/j.mser.2014.04.001
  • Seyednajad H, Ghassemi AH, van Nostrum CF, et al. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Controlled Release. 2011;152:168–176.10.1016/j.jconrel.2010.12.016
  • Witt U, Müller R-J, Deckwer W-D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J. Environ. Polym. Degrad. 1995;3:215–223.10.1007/BF02068676
  • Marten E, Müller R-J, Deckwer W-D. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters. Polym. Degrad. Stab. 2005;88:371–381.10.1016/j.polymdegradstab.2004.12.001
  • Witt U, Müller R-J, Deckwer W-D. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J. Environ. Polym. Degrad. 1997;5:81–89.10.1007/BF02763591
  • Jiang L, Wolcott MP, Zhang J, Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules. 2006;7:199–207.
  • Wang A, Gan Y, Yu H, et al. Improvement of the cytocompatibility of electrospun poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] mats by Ecoflex. J. Biomed. Mater. Res. Part A. 2012;100:1505–1511.10.1002/jbm.a.v100a.6
  • Witt U, Einig T, Yamamoto M, et al. Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere. 2001;44:289–299.10.1016/S0045-6535(00)00162-4
  • Witt U, Müller R-J, Deckwer W-D. Studies on sequence distribution of aliphatic/aromatic copolyesters by high-resolution 13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability. Macromol. Chem. Phys. 1996;197:1525–1535.10.1002/macp.1996.021970428
  • Fukushima K, Rasyida A, Yang M-C. Characterization, degradation and biocompatibility of PBAT based nanocomposites. Appl. Clay Sci. 2013;80–81:291–298.10.1016/j.clay.2013.04.015
  • Nar M, Staufenberg G, Yang B, et al. Osteoconductive bio-based meshes based on poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylene adipate-co-terephthalate) blends. Mater. Sci. Eng. C. 2014;38:315–324.10.1016/j.msec.2014.01.047
  • Jao WC, Lin CH, Hsieh JY, et al. Effect of immobilization of polysaccharides on the biocompatibility of poly (butyleneadipate-co-terephthalate) films. Polym. Adv. Technol. 2010;21:543–553.
  • Costa-Pinto AR, Salgado AJ, Correlo VM, et al. Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Tissue Eng. Part A. 2008;14:1049–1057.10.1089/ten.tea.2007.0153
  • Correlo VM, Costa-Pinto AR, Sol P, et al. Melt processing of chitosan-based fibers and fiber-mesh scaffolds for the engineering of connective tissues. Macromol. Biosci. 2010;10:1495–1504.10.1002/mabi.v10.12
  • Neto WAR, de Paula ACC, Martins TMM, et al. Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polym. Degrad. Stab. 2015;120:61–69.10.1016/j.polymdegradstab.2015.06.009
  • de Castro JG, Rodrigues BVM, Ricci R, et al. Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition. RSC Adv. 2016;6:32615–32623.10.1039/C6RA00889E
  • Gerçek I, Tığlı RS, Gümüşderelioğlu M. A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying. J. Biomed. Mater. Res. Part A. 2008;86:1012–1022.10.1002/jbm.a.v86a:4
  • Roy PK, Surekha P, Rajagopal C, et al. Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polym. Lett. 2007;1:208–216.10.3144/expresspolymlett.2007.32
  • Marvel CS. Thermally stable polymers. Pure Appl. Chem. 1968;16:351–368.
  • Hsieh HL, Quirk RP. Anionic polymerization principles and practical applications. New York (NY): Marcel Dekker; 1996.
  • Kim M-N, Lee B-Y, Lee I-M, et al. Toxicity and biodegradation of products from polyester hydrolysis. J. Environ. Sci. Health. A. 2001;36:447–463.10.1081/ESE-100103475
  • Wang K, Cai L, Jesse S, et al. Poly(ε-caprolactone)-banded spherulites and interaction with MC3T3-E1 cells. Langmuir. 2012;28:4382–4395.10.1021/la205162d
  • Gümüşderelioğlu M, Dalkıranoğlu S, Aydın RST, et al. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J. Biomed. Mater. Res. A. 2011;98:461–472.
  • Butscher A, Bohner M, Gauckler M, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011;7:907–920.10.1016/j.actbio.2010.09.039
  • Murphy MB, Mikos AG, Polymer scaffold fabrication. In: Lanza R, Vacanti J. esitors. Principles of Tissue Engineering Burlington (VT): Academic Press; 2007. p. 309–319.
  • Çakmak S, Çakmak AS, Gümüşderelioğlu M. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Biomed. Mater. 2013;8:1–15.
  • Correlo VM, Boesel LF, Pinho E, et al. Melt-based compression-molded scaffolds from chitosan–polyester blends and composites: morphology and mechanical properties. J. Biomed. Materials Res. Part A. 2009;91:489–504.
  • Gümüşderelioğlu M, Gönen-Karakeçili A. Comparison of bacterial and tissue cell initial adhesion on hydrophilic/hydrophobic biomaterials. J. Biomater. Sci. Polym. Ed. 2002;13:185–196.
  • Bastarrachea L, Dhawan S, Sablani SS, et al. Biodegradable poly(butyleneadipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J. Food Sci. 2010;75:215–224.10.1111/(ISSN)1750-3841
  • Tamada Y, Ikada Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J. Colloid Interface Sci. 1993;155:334–339.10.1006/jcis.1993.1044
  • Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym. Adv. Technol. 1997;8:334–339.
  • Betz MW, Yoon DM, Fisher JP. Engineering polymeric scaffolds for bone grafts. In: Bronner F, Farach-Carson MC, Mikos AG), editors. Engineering of functional skeletal tissues. New York (NY): Springer; 2006. p. 81–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.