380
Views
40
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization, and biological activity of cross-linked chitosan biguanidine loaded with silver nanoparticles

, &
Pages 1880-1898 | Received 05 Apr 2016, Accepted 19 Sep 2016, Published online: 02 Oct 2016

References

  • Yazdani-Pedram M, Lagos A, Retuert J, et al. On the modification of chitosan through grafting. J. Macromol. Sci. Part A: Pure Appl. Chem. 1995;32:1037–1047.
  • Yazdani-Pedram M, Retuert J. Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan. J. Appl. Polym. Sci. 1997;63:1321–1326.10.1002/(ISSN)1097-4628
  • Lehr C-M, Bouwstra JA, Schacht EH, et al. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 1992;78:43–48.10.1016/0378-5173(92)90353-4
  • Alves N, Mano J. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 2008;43:401–414.10.1016/j.ijbiomac.2008.09.007
  • Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ. J. Sci. Technol. 2013;11:51–66.
  • Mirzaei BE, Ramazani SAA, Shafiee M, et al. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int. J. Polym. Mater. 2013;62:605–611.10.1080/00914037.2013.769165
  • Rabea EI, Badawy ME-T, Stevens CV, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–1465.10.1021/bm034130m
  • Tsai G-J, Su W-H. Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot. 1999;62:239–243.
  • Young DH, Kauss H. Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol. 1983;73:698–702.10.1104/pp.73.3.698
  • Jin X, Wang J, Bai J. Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohydr. Res. 2009;344:825–829.10.1016/j.carres.2009.01.022
  • Huang J, Jiang H, Qiu M, et al. Antibacterial activity evaluation of quaternary chitin against Escherichia coli and Staphylococcus aureus. Int. J. Biol. Macromol. 2013;52:85–91.10.1016/j.ijbiomac.2012.10.017
  • Geisberger G, Gyenge EB, Hinger D, et al. Chitosan-thioglycolic acid as a versatile antimicrobial agent. Biomacromolecules. 2013;14:1010–1017.10.1021/bm3018593
  • Mohamed NA, Sabaa MW, El-Ghandour AH, et al. Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents. Int. J. Biol. Macromol. 2013;60:156–164.10.1016/j.ijbiomac.2013.05.022
  • Mohamed RR, Sabaa MW. Synthesis and characterization of antimicrobial crosslinked carboxymethyl chitosan nanoparticles loaded with silver. Int. J. Biol. Macromol. 2014;69:95–99.10.1016/j.ijbiomac.2014.05.025
  • Sabaa MW, Mohamed NA, Mohamed RR, et al. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr. Polym. 2010;79:998–1005.10.1016/j.carbpol.2009.10.024
  • Salama HE, Saad GR, Sabaa MW. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety. Int. J. Biol. Macromol. 2015;79:996–1003.10.1016/j.ijbiomac.2015.06.009
  • Berlinck RG, Trindade-Silva AE, Santos MF. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep. 2012;29:1382–1406.10.1039/c2np20071f
  • Berlinck RG, Burtoloso ACB, Trindade-Silva AE, et al. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep. 2010;27:1871–1907.10.1039/c0np00016g
  • Lebrini M, Bentiss F, Chihib N-E, et al. Polyphosphate derivatives of guanidine and urea copolymer: inhibiting corrosion effect of armco iron in acid solution and antibacterial activity. Corros. Sci. 2008;50:2914–2918.10.1016/j.corsci.2008.07.003
  • Qian L, Guan Y, He B, et al. Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM. Polymer. 2008;49:2471–2475.10.1016/j.polymer.2008.03.042
  • Zhang L-Y, Yao S-J, Guan Y-X. Effects of poly (methylene-co-guanidine) on microbial growth in an alginate/cellulose sulphate–CaCl2/poly (methylene-co-guanidine) capsule system. Process Biochem. 2005;40:189–193.10.1016/j.procbio.2003.12.003
  • Sun S, An Q, Li X, et al. Synergistic effects of chitosan–guanidine complexes on enhancing antimicrobial activity and wet-strength of paper. Bioresour. Technol. 2010;101:5693–5700.10.1016/j.biortech.2010.02.046
  • Hu Y, Du Y, Yang J, et al. Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydr. Polym. 2007;67:66–72.10.1016/j.carbpol.2006.04.015
  • Zhao X, He J-X, Zhan Y-Z. Synthesis and characterization of chitosan biguanidine hydrochloride under microwave irradiation. Polym. J. 2009;41:1030–1035.10.1295/polymj.PJ2009087
  • Wang Y, Qi Y, Li Y, et al. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J. Hazard. Mater. 2013;260:9–15.
  • Zhao X, Qiao Z-Z, He J-X. Preparation of chitosan biguanidine hydrochloride and application in antimicrobial finish of wool fabric. J. Eng. Fiber Fabr. 2010;5:16–24.
  • Z-S Cai, Y-M Sun, X-M Zhu, et al. Preparation and characterization of ortho-biguanidinyl benzoyl chitosan hydrochloride and its antibacterial activities. Polym. Bull. 2013;70:1085–1096.
  • Hu Y, Xiong K, Chen L, et al. Anti-TMV activity of guanidinylated chitosan hydrochloride. Polym. Prepr. 2009;50:172–173.
  • Wang Z, Ge H. Adsorption of chromium (VI) from aqueous solution using a novel chitosan biguanidine. J. Dispersion Sci. Technol. 2015;36:1106–1114.10.1080/01932691.2014.955918
  • Lu YH, Song MS. Effect of chitosan biguanidine hydrochloride on textile properties of antheraea pernyi silk. Advan. Mater. Res. Trans Tech Publications. 2011;199:1823–1826.
  • Zhao X, Min J, He JX. Effect of microwave curing on antimicrobial activity of chitosan biguanidine hydrochloride treated wool fabrics. J. Text. Inst. 2011;102:801–807.
  • He B, Shao Y, Liang M, et al. Biodiesel production from soybean oil by guanidinylated chitosan. Fuel. 2015;159:33–39.10.1016/j.fuel.2015.06.038
  • Sahariah P, Óskarsson BM, Hjálmarsdóttir MÁ, et al. Synthesis of guanidinylated chitosan with the aid of multiple protecting groups and investigation of antibacterial activity. Carbohydr. Polym. 2015;127:407–417.10.1016/j.carbpol.2015.03.061
  • Zhang F, Wu J, Kang D, et al. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli. J. Biomater. Sci. Polym. Ed. 2013;24:1410–1425.10.1080/09205063.2012.763109
  • Božanić DK, Djoković V, Dimitrijević-Branković S, et al. Inhibition of microbial growth by silver–starch nanocomposite thin films. J. Biomater. Sci. Polym. Ed. 2011;22:2343–2355.10.1163/092050610X539532
  • Singh D, Singh A, Singh R. Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing. J. Biomater. Sci. Polym. Ed. 2015;26:1269–1285.10.1080/09205063.2015.1087366
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009;27:76–83.10.1016/j.biotechadv.2008.09.002
  • Vimala K, Mohan YM, Sivudu KS, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf. B Biointerfaces. 2010;76:248–258.10.1016/j.colsurfb.2009.10.044
  • Cho K-H, Park J-E, Osaka T, et al. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta. 2005;51:956–960.10.1016/j.electacta.2005.04.071
  • Bajpai S, Mohan YM, Bajpai M, et al. Synthesis of polymer stabilized silver and gold nanostructures. J. Nanosci. Nanotechnol. 2007;7:2994–3010.10.1166/jnn.2007.911
  • Thomas V, Yallapu MM, Sreedhar B, et al. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J. Biomater. Sci. Polym. Ed. 2009;20:2129–2144.10.1163/156856209X410102
  • Panáček A, Kolář M, Večeřová R, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340.10.1016/j.biomaterials.2009.07.065
  • Greulich C, Kittler S, Epple M, et al. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch. Surg. 2009;394:495–502.10.1007/s00423-009-0472-1
  • Klasen H. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26:117–130.
  • Lansdown A. Silver I: its antibacterial properties and mechanism of action. J. Wound Care. 2002;11:125–130.
  • Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Microbiol. Biotechnol. 2008;74:2171–2178.
  • Li W-R, Xie X-B, Shi Q-S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010;85:1115–1122.10.1007/s00253-009-2159-5
  • Avadi M, Sadeghi A, Tahzibi A, et al. Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects. Eur. Polymer J. 2004;40:1355–1361.10.1016/j.eurpolymj.2004.02.015
  • Mulfinger L, Solomon SD, Bahadory M, et al. Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007;84:322–325.10.1021/ed084p322
  • Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008;3:1125–1131.10.1038/nprot.2008.75
  • Scott AC. Laboratory control of antimicrobial therapy. In: Collee JG, Duguid JP, Fraser AG, et al, editors. Mackie & McCartney practical medical microbiology. Edinburgh: Churchill Livingstone; 1989. p. 161–181.
  • K Saini KR, Choudhary SA, Joshi YC, et al. Solvent free synthesis of chalcones and their antibacterial activities. J. Chem. 2005; 2:224–227.
  • Bhuiyan M, Hossain M, Mahmud M, et al. Microwave-assisted efficient synthesis of chalcones as probes for antimicrobial activities. Chem. J. 2011;1:21–28.
  • Guinesi LS, Cavalheiro ETGA. Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydr. Polym. 2006;65:557–561.10.1016/j.carbpol.2006.01.030
  • Tian F, Liu Y, Hu K, et al. Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydr. Polym. 2004;57:31–37.10.1016/j.carbpol.2004.03.016
  • Rúnarsson ÖV, Malainer C, Holappa J, et al. tert-Butyldimethylsilyl O-protected chitosan and chitooligosaccharides: useful precursors for N-modifications in common organic solvents. Carbohydr. Res. 2008;343:2576–2582.10.1016/j.carres.2008.08.014
  • Zhang Y, Jiang J, Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer. 1999;40:6189–6198.10.1016/S0032-3861(98)00828-3
  • LeBel O, Maris T, Duval H, et al. A practical guide to arylbiguanides Synthesis and structural characterization. Can. J. Chem. 2005;83:615–625.10.1139/v05-093
  • Clement B, Girreser U. Characterization of biguanides by 15N NMR spectroscopy. Magn. Reson. Chem. 1999;37:662–666.10.1002/(ISSN)1097-458X
  • Sajomsang W, Tantayanon S, Tangpasuthadol V, et al. Synthesis and characterization of N-aryl chitosan derivatives. Int. J. Biol. Macromol. 2008;43:79–87.10.1016/j.ijbiomac.2008.03.010
  • Philip D, Unni C. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E Low Dimens. Syst. Nanostruct. 2011;43:1318–1322.10.1016/j.physe.2010.10.006
  • Basavaraja S, Balaji S, Lagashetty A, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 2008;43:1164–1170.10.1016/j.materresbull.2007.06.020
  • Wang H, Qiao X, Chen J, et al. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf., A Physicochem. Eng. Asp. 2005;256:111–115.10.1016/j.colsurfa.2004.12.058
  • Bengisu M, Yilmaz E. Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydr. Polym. 2002;50:165–175.10.1016/S0144-8617(02)00018-8
  • Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta. 2003;396:153–166.10.1016/S0040-6031(02)00523-3
  • Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym. Degrad. Stab. 2005;87:389–394.10.1016/j.polymdegradstab.2004.08.006
  • López F, Mercê A, Alguacil FJ, et al. A kinetic study on the thermal behaviour of chitosan. J. Therm. Anal. Calorim. 2008;91:633–639.10.1007/s10973-007-8321-3
  • Ikeda T, Hirayama H, Yamaguchi H, et al. Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 1986;30:132–136.10.1128/AAC.30.1.132
  • Hadwiger L, Kendra D, Fristensky B, et al. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Chitin in nature and technology. New York (NY): Springer/Plenum; 1986. p. 209–214.10.1007/978-1-4613-2167-5
  • Broxton P, Woodcock P, Heatley F, et al. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J. Appl. Bacteriol. 1984;57:115–124.10.1111/jam.1984.57.issue-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.