221
Views
20
CrossRef citations to date
0
Altmetric
Articles

In vitro gastrointestinal-resistant pectin hydrogel particles for β-glucuronidase adsorption

, , , , , , , , , , , & show all
Pages 293-311 | Received 29 Apr 2016, Accepted 17 Nov 2016, Published online: 21 Dec 2016

References

  • Munarin F, Tanzi MC, Petrini P. Advances in biomedical applications of pectin gels. Int J Biol Macromol. 2012;51:681–689.10.1016/j.ijbiomac.2012.07.002
  • Borisenkov MF, Karmanov AP, Kocheva LS, et al. β-Glucuronidase and estrogens adsorption on pectin/lignin hydrogel particles. Intern J Polymer Mater Polymer Biomater. 2016;65:433–441.10.1080/00914037.2015.1129955
  • Lépine J, Audet-Walsh E, Grégoire J, et al. Circulating estrogens in endometrial cancer cases and their relationship with tissular expression of key estrogen biosynthesis and metabolic pathways. J Clin Endocrinol Metab. 2010;95:2689–2698.10.1210/jc.2010-2648
  • Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–335.10.1016/j.chom.2011.10.003
  • Borisenkov M, Bakutova L, Latkin D, et al. Interaction of microbial β-glucuronidase with vegetable pectins. J Agric Food Chem. 2011;59:9922–9926.10.1021/jf202307r
  • Borisenkov M, Bakutova L, Golovchenko V, et al. Impact of cabbage pectin–protein complex on microbial β-glucuronidase activity. J Agric Food Chem. 2013;61:3054–3058.10.1021/jf305537x
  • Assifaoui A, Bouyer F, Chambin O, et al. Silica-coated calcium pectinate beads for colonic drug delivery. Acta Biomater. 2013;9:6218–6225.10.1016/j.actbio.2012.11.031
  • Nayak AK, Pal D, Das S. Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym. 2013;96:349–357.10.1016/j.carbpol.2013.03.088
  • Chang C, Wang ZC, Quan CY, et al. Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery. J Biomater Sci Polym Ed. 2007;18:1591–1599.
  • Fan L, Sun Y, Xie W, et al. Oxidized pectin cross-linked carboxymethyl chitosan: a new class of hydrogel. J Biomater Sci Polym Ed. 2012;23:2119–2132.
  • Popov SV, Ovodov YUS. Polypotency of the immunomodulatory effect of pectins. Biochemistry (Mosc). 2013;78:823–835.10.1134/S0006297913070134
  • Fraeye I, Duvetter T, Doungla E, et al. Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends Food Sci Technol. 2010;21:219–228.10.1016/j.tifs.2010.02.001
  • Günter EA, Popeyko OV, Markov PA, et al. Swelling and morphology of calcium pectinate gel beads obtained from Silene vulgaris callus modified pectins. Carbohydr Polym. 2014;103:550–557.10.1016/j.carbpol.2013.12.071
  • Günter EA, Popeyko OV. Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydr Polym. 2016;147:490–499.10.1016/j.carbpol.2016.04.026
  • Polle AYA, Ovodova RG, Shashkov AS, et al. Some structural features of pectic polysaccharide from tansy, Tanacetum vulgare L. Carbohydr Polym. 2002;49:337–344.10.1016/S0144-8617(01)00346-0
  • Barnes HA, Hutton JF, Walters K. An introduction to rheology. Elsevier; 1989.
  • Belščak-Cvitanović A, Komes D, Karlović S, et al. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015;167:378–386.10.1016/j.foodchem.2014.07.011
  • Kumar PTS, Ramya C, Jayakumar R, et al. Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds. Colloids Surf, B Biointerfaces. 2013;106:109–116.10.1016/j.colsurfb.2013.01.048
  • Yamdej R, Pangza K, Srichana T, et al. Superior physicochemical and biological properties of poly(vinyl alcohol)/sericin hydrogels fabricated by a non-toxic gamma-irradiation technique. J Bioact Compat Polym. 2016 Jul 26. doi:10.1177/0883911516653145
  • Mozzi F, Gerbino E, Font De Valdez G, et al. Functionality of exopolysaccharides produced by lactic acid bacteria in an in vitro gastric system. J Appl Microbiol. 2009;107:56–64.10.1111/jam.2009.107.issue-1
  • Gebara C, Chaves KS, Ribeiro ME, et al. Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res Int. 2013;51:872–878.10.1016/j.foodres.2013.02.008
  • Chang KLB, Lin J. Swelling behavior and the release of protein from chitosan-pectin composite particles. Carbohydr Polym. 2000;43:163–169.10.1016/S0144-8617(00)00145-4
  • Ross-Murphy SB. Rheological methods. In: Ross-Murphy SB, editor. Physical techniques for the study of food biopolymers. London: Blackie Academic & Professional, Chapman & Hall; 1994. p. 343e393.10.1007/978-1-4615-2101-3
  • Fissore EN, Rojas AM, Gerschenson LN, et al. Butternut and beetroot pectins: characterization and functional properties. Food Hydrocoll. 2013;31:172–182.10.1016/j.foodhyd.2012.10.012
  • Jonassen H, Treves A, Kjøniksen AL, et al. Preparation of ionically cross-linked pectin nanoparticles in the presence of chlorides of divalent and monovalent cations. Biomacromolecules. 2013;14:3523–3531.10.1021/bm4008474
  • Veronovski A, Tkalec G, Knez Željko, et al. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr Polym. 2014;113:272–278.10.1016/j.carbpol.2014.06.054
  • Wong TW, Colombo G, Sonvico F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech. 2011;12:201–214.10.1208/s12249-010-9564-z
  • Jung J, Arnold RD, Wicker L. Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf, B: Biointerfaces. 2013;104:116–121.10.1016/j.colsurfb.2012.11.042
  • Zhang W, Mahuta KM, Mikulski BA, et al. Novel pectin-based carriers for colonic drug delivery. Pharm Dev Technol. 2016;21:127–130.10.3109/10837450.2014.965327
  • Jelvehgari M, Mobaraki V, Montazam SH. Preparation and evaluation of mucoadhesive beads/discs of alginate and algino-pectinate of piroxicam for colon-specific drug delivery via oral route. Jundishapur J Nat Pharm Prod. 2014;9:e16576.
  • Morris VJ, Gromer A, Kirby AR, et al. Using AFM and force spectroscopy to determine pectin structure and (bio) functionality. Food Hydrocoll. 2011;25:230–237.10.1016/j.foodhyd.2009.11.015
  • Sharma R, Ahuja M. Thiolated pectin: synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydr Polym. 2011;85:658–663.10.1016/j.carbpol.2011.03.034
  • Synytsya A, Copikova J, Matejka P, et al. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym. 2003;54:97–106.10.1016/S0144-8617(03)00158-9
  • Copikova J, Synytsya A, Cerna M, et al. Application of FT-IR spectroscopy in detection of food hydrocolloids in confectionery jellies and food supplements. Czech J Food Sci. 2001;19:51–56.
  • Li J, Kim SY, Chen X, et al. Calcium-alginate beads loaded with gallic acid: preparation and characterization. LWT – Fd. Sci Technol. 2016;68:667–673.
  • Peretz S, Anghel DF, Vasilescu E, et al. Synthesis, characterization and adsorption properties of alginate porous beads. Polym Bull. 2015;72:3169–3182.10.1007/s00289-015-1459-4
  • Singh B, Sharma V, Chauhan D. Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery. Chem Eng Res Des. 2010;88:997–1012.10.1016/j.cherd.2010.01.017
  • Einhorn-Stoll U, Kunzek H. Thermoanalytical characterisation of processing-dependent structural changes and state transitions of citrus pectin. Food Hydrocoll. 2009;23:40–52.10.1016/j.foodhyd.2007.11.009
  • Horvat G, Fajfar T, Perva Uzunalić A, et al. Thermal properties of polysaccharide aerogels. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5814-y
  • BeMiller James N. An introduction to pectins: structure and properties. In: Fishman ML, Jen JJ, editors. Chemistry and function of pectins. DC American Chemical Society: Washington; 1986. p. 2–12.10.1021/symposium
  • Yoo Y-H, Fishman ML, Savary BJ, et al. Monovalent salt-induced gelation of enzymatically deesterified pectin. J Agric Food Chem. 2003;51:7410–7417.10.1021/jf030152o
  • O’Brien AB, Philp K, Morris ER. Gelation of high-methoxy pectin by enzymic de-esterification in the presence of calcium ions: a preliminary evaluation. Carbohydr Res. 2009;344:1818–1823.10.1016/j.carres.2008.09.029
  • Barrioni BR, De Carvalho SM, Oréfice RL, et al. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Mater Sci Eng C. 2015;52:22–30.10.1016/j.msec.2015.03.027
  • Morais DS, Rodrigues MA, Lopes MA, et al. Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. J Mater Sci: Mater Med. 2013;24:2145–2155.
  • Popa E, Carvalho P, Dias A, et al. Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. J Biomed Mater Res Part A. 2014;102:4087–4097.10.1002/jbm.a.v102.11
  • Konovalova MV, Markov PA, Durnev EA, et al. Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application. J Biomed Mater Res: Part A. 2016 Oct 17. doi:10.1002/jbm.a.35936
  • Narkar M, Sher P, Pawar A. Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS Pharm Sci Tech. 2010;11:267–277.10.1208/s12249-010-9384-1
  • Oliveira GF, Ferrari PC, Carvalho LQ, et al. Chitosan-pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Carbohydr Polym. 2010;82:1004–1009.10.1016/j.carbpol.2010.06.041
  • Prezotti FG, Cury BSF, Evangelista RC. Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohydr Polym. 2014;113:286–295.10.1016/j.carbpol.2014.07.021
  • Remunan-Lopez C, Bodmeier R. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J Control Rel. 1997;44:2215–2225.
  • Jefferson RA, Burgess SM, Hirsh D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Nat Acad Sci. 1986;83:8447–8451.10.1073/pnas.83.22.8447
  • Lampe JW. Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. Amer J Clin Nutr. 1999;70:475S–490S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.