834
Views
26
CrossRef citations to date
0
Altmetric
Articles

Molecularly imprinted cryogel membranes for mitomycin C delivery

, , , &
Pages 519-531 | Received 08 Nov 2016, Accepted 12 Jan 2017, Published online: 20 Jan 2017

References

  • Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59:478–490.10.1016/j.addr.2007.04.007
  • Choonara BF, Choonara YE, Kumar P, et al. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014;32:1269–1282.10.1016/j.biotechadv.2014.07.006
  • Denizli A, Kiremitçi M, Pişkin E. Subcutaneous polymeric matrix system poly(HEMA-BGA) for controlled release of an anticancer drug (5-fluorouracil): I. Synthesis and structure. Biomaterials. 1988;9:257–262.
  • Anselmo AC. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15–28.10.1016/j.jconrel.2014.03.053
  • Munoz F, Alici G, Li W. A review of drug delivery systems for capsule endoscopy. Adv Drug Deliv Rev. 2014;71:77–85.10.1016/j.addr.2013.12.007
  • Peng H, Dong R, Wang S, et al. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm. 2013;446:153–159.10.1016/j.ijpharm.2013.01.071
  • Kryscio DR, Peppas NA. Mimicking biological delivery through feedback-controlled drug release systems based on molecular imprinting. AIChE J. 2009;55:1311–1324.10.1002/aic.v55:6
  • Zhang K, Guan X, Qiu Y, et al. A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl Surf Sci. 2016;389:1208–1213.10.1016/j.apsusc.2016.08.107
  • Chen L, Wang X, Lu W, et al. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–2211.10.1039/C6CS00061D
  • Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 2011;40:2922–2942.10.1039/c0cs00084a
  • Schirhagl R, Ren K, Zare RN. Surface-imprinted polymers in microfluidic devices. Sci China Chem. 2012;55:469–483.10.1007/s11426-012-4544-7
  • Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 2012;8:461–473.10.1016/j.actbio.2011.11.005
  • Li L, Chen L, Zhang H, et al. Temperature and magnetism bi-responsive molecularly imprinted polymers: preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Mater Sci Eng C. 2016;61:158–168.10.1016/j.msec.2015.12.027
  • Cunliffe D, Kirby A, Alexander C. Molecularly imprinted drug delivery systems. Adv Drug Deliv Rev. 2005;57:1836–1853.
  • Lozinsky VI, Galaev IY, Plieva FM, et al. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003;21:445–451.10.1016/j.tibtech.2003.08.002
  • Savina IN, Cnudde V, D’Hollander S, et al. Cryogels from poly(2-hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds. Soft Matter. 2007;3:1176–1184.10.1039/b706654f
  • Çetin K, Perçin I, Denizli F, et al. Tentacle-type immobilized metal affinity cryogel for invertase purification from Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol. 2016:1–9. doi: 10.1080/21691401.2016.1243549.
  • Han M-E, Kang BJ, Kim S-H, et al. Gelatin-based extracellular matrix cryogels for cartilage tissue engineering. J Ind Eng Chem. 2017;45:421–429.
  • Göppert B, Sollich T, Abaffy P, et al. Cancer treatment: superporous poly(ethylene glycol) diacrylate cryogel with a defined elastic modulus for prostate cancer cell research (small 29/2016). Small. 2016;12:4020–4020.10.1002/smll.v12.29
  • Fatoni A, Numnuam A, Kanatharana P, et al. A novel molecularly imprinted chitosan–acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin. Analyst. 2014;139:6160–6167.10.1039/C4AN01000K
  • Çetin K, Denizli A. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs. Colloids Surf B. 2015;126:401–406.
  • Verweij J, Pinedo HM. Mitomycin C: mechanism of action, usefulness and limitations. Anticancer Drugs. 1990;1:5–14.10.1097/00001813-199010000-00002
  • Crooke ST, Bradner WT. Mitomycin C: a review. Cancer Treat Rev. 1976;3:121–139.10.1016/S0305-7372(76)80019-9
  • Wulff G, Liu J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res. 2012;45:239–247.10.1021/ar200146m
  • Caka M, Türkcan C, Aktaş Uygun D, et al. Controlled release of curcumin from poly(HEMA-MAPA) membrane. Artif Cells Nanomed Biotechnol. 2016:1–6.10.3109/21691401.2016.1160913
  • Türkmen D, Bereli N, Çorman ME, et al. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C. Artif Cells Nanomed Biotechnol. 2014;42:316–322.
  • Denizli A, Sanli N, Garipcan B, et al. Methacryloylamidoglutamic acid incorporated porous poly(methyl methacrylate) beads for heavy-metal removal. Ind Eng Chem Res. 2004;43:6095–6101.10.1021/ie030204z
  • Demirbilek M. Effect of tributyl citrate on chitosan scaffold: chemical, physical properties, pro/anti inflammation cytokines. J Porous Mater. 2015;22:395–402.10.1007/s10934-015-9908-x
  • Göktürk I, Perçin I, Denizli A. Catalase purification from rat liver with iron-chelated poly(hydroxyethyl methacrylate- N -methacryloyl-(l)-glutamic acid) cryogel discs. Prep Biochem Biotechnol. 2016;46:602–609.10.1080/10826068.2015.1085400
  • Derazshamshir A, Baydemir G, Andac M, et al. Molecularly imprinted PHEMA-based cryogel for depletion of hemoglobin from human blood. Macromol Chem Phys. 2010;211:657–668.10.1002/macp.v211:6
  • Ergün B, Baydemir G, Andaç M, et al. Ion imprinted beads embedded cryogels for in vitro removal of iron from β-thalassemic human plasma. J Appl Polym Sci. 2012;125:254–262.10.1002/app.v125.1
  • Bereli N, Şener G, Yavuz H, et al. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma. Mater Sci Eng C. 2011;31:1078–1083.10.1016/j.msec.2011.03.008
  • Denizli A. Heparin-immobilized poly(2-hydroxyethylmethacrylate)-based microspheres. J Appl Polym Sci. 1999;74:655–662.10.1002/(ISSN)1097-4628
  • Sen T, Sheppard SJ, Mercer T, et al. Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery. RSC Adv. 2012;2:5221–5228.10.1039/c2ra20199b
  • Li C. Poly(l-glutamic acid) – anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54:695–713.10.1016/S0169-409X(02)00045-5
  • Hanafy AF, Yousef MI, Mortada SA, et al. Assessment of localized therapeutic effect for prolonged release biodegradable implants loaded with 5-Fluorouracil on rats with induced liver cancer. J Taibah Univ Med Sci. 2014;9:14–22.
  • Fung LK, Saltzman WM. Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev. 1997;26:209–230.10.1016/S0169-409X(97)00036-7
  • Babu VR, Sairam M, Hosamani KM, et al. Development of 5-fluorouracil loaded poly(acrylamide-co-methylmethacrylate) novel core-shell microspheres: in vitro release studies. Int J Pharm. 2006;325:55–62.10.1016/j.ijpharm.2006.06.020
  • Rao KM, Mallikarjuna B, Krishna Rao KSV, et al. Synthesis and characterization of pH sensitive poly (hydroxy ethyl methacrylate-co-acrylamidoglycolic acid) based hydrogels for controlled release studies of 5-fluorouracil. Int J Polym Mater. 2013;62:565–571.10.1080/00914037.2013.769160
  • Olukman M, Şanlı O, Solak EK. Release of anticancer drug 5-fluorouracil from different ionically crosslinked alginate beads. J Biomater Nanobiotechnol. 2012;3:469–479.10.4236/jbnb.2012.34048
  • Denizli A, Kiremitçi M, Pişkin E. Subcutaneous polymeric matrix system p(HEMA-BGA) for controlled release of an anticancer drug (5-fluorouracil): II: release kinetics. Biomaterials. 1988;9:363–366.10.1016/0142-9612(88)90034-8
  • Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol Biol Med. 2010;6:153–160.
  • Aksungur P, Demirbilek M, Denkbaş EB, et al. Comparative evaluation of cyclosporine A/HPβCD-incorporated PLGA nanoparticles for development of effective ocular preparations. J Microencapsul. 2012;29:605–613.10.3109/02652048.2012.668961

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.