288
Views
12
CrossRef citations to date
0
Altmetric
Articles

Preparation of gelatin nanospheres incorporating quantum dots and iron oxide nanoparticles for multimodal cell imaging

, &
Pages 555-568 | Received 23 Nov 2016, Accepted 20 Jan 2017, Published online: 01 Feb 2017

References

  • Tabata Y, Hijikata S, Muniruzzaman M, et al. Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed. 1999;10(1):79–94.10.1163/156856299X00298
  • Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials. 2003;24(24):4375–4383.10.1016/S0142-9612(03)00337-5
  • Bajada S, Mazakova I, Richardson JB, et al. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med. 2008;2(4):169–183.10.1002/(ISSN)1932-7005
  • Adonai N, Nguyen KN, Walsh J, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Nat Acad Sci. 2002;99(5):3030–3035.10.1073/pnas.052709599
  • Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med. 2002;43(8):1072–1083.
  • Tarantal AF, Lee CC, Kukis DL, et al. Radiolabeling human peripheral blood stem cells for positron emission tomography (PET) imaging in young rhesus monkeys. PLoS One. 2013;8(10):e77148.10.1371/journal.pone.0077148
  • Sato N, Wu H, Asiedu KO, et al. (89)Zr-Oxine complex PET cell imaging in monitoring cell-based therapies. Radiology. 2015;275(2):490–500.10.1148/radiol.15142849
  • Bennink RJ, van Montfrans C, de Jonge WJ, et al. Imaging of intestinal lymphocyte homing by means of pinhole SPECT in a TNBS colitis mouse model. Nucl Med Biol. 2004;31(1):93–101.10.1016/S0969-8051(03)00109-4
  • Kim YH, Lee DS, Kang JH, et al. Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J Nucl Med. 2005;46(2):305–311.
  • Cheng SH, Yu D, Tsai HM, et al. Dynamic in vivo SPECT imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma. J Nucl Med. 2016;57(2):279–284.10.2967/jnumed.115.163006
  • Josserand V, Texier-Nogues I, Huber P, et al. Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice. Gene Ther. 2007;14(22):1587–1593.10.1038/sj.gt.3303028
  • Kawabori M, Kuroda S, Sugiyama T, et al. Intracerebral, but not intravenous, transplantation of bone marrow stromal cells enhances functional recovery in rat cerebral infarct: an optical imaging study. Neuropathology. 2012;32(3):217–226.10.1111/j.1440-1789.2011.01260.x
  • Byrne WL, DeLille A, Kuo C, et al. Use of optical imaging to progress novel therapeutics to the clinic. J Controlled Release. 2013;172(2):523–534.10.1016/j.jconrel.2013.05.004
  • Sabapathy V, Mentam J, Jacob PM, et al. noninvasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cells Int. 2015;2015:606415.
  • Aoki I, Takahashi Y, Chuang KH, et al. Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed. 2006;19(1):50–59.10.1002/(ISSN)1099-1492
  • Jo J, Aoki I, Tabata Y. Design of iron oxide nanoparticles with different sizes and surface charges for simple and efficient labeling of mesenchymal stem cells. J Controlled Release. 2010;142(3):465–473.10.1016/j.jconrel.2009.11.014
  • Tachibana Y, Enmi J, Agudelo CA, et al. Long-term/bioinert labeling of rat mesenchymal stem cells with PVA-Gd conjugates and MRI monitoring of the labeled cell survival after intramuscular transplantation. Bioconjug Chem. 2014;25(7):1243–1251.10.1021/bc400463t
  • Baker M. Whole-animal imaging: the whole picture. Nature. 2010;463(7283):977–980.10.1038/463977a
  • Mitra RN, Doshi M, Zhang X, et al. An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery. Biomaterials. 2012;33(5):1500–1508.10.1016/j.biomaterials.2011.10.068
  • Wen X, Wang Y, Zhang F, et al. In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials. 2014;35(16):4627–4635.10.1016/j.biomaterials.2014.02.042
  • Ye F, Barrefelt A, Asem H, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35(12):3885–3894.10.1016/j.biomaterials.2014.01.041
  • Matsui M, Tabata Y. Enhanced angiogenesis by multiple release of platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogels. Acta Biomater. 2012;8(5):1792–1801.10.1016/j.actbio.2012.01.016
  • Saito T, Tabata Y. Preparation of gelatin hydrogels incorporating small interfering RNA for the controlled release. J Drug Target. 2012;20(10):864–872.10.3109/1061186X.2012.725170
  • Kim YH, Tabata Y. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure. J Biomed Mater Res Part A. 2016;104(4):942–956.10.1002/jbma.v104.4
  • Ohta S, Nitta N, Sonoda A, et al. Cisplatin-conjugated degradable gelatin microspheres: fundamental study in vitro. Br J Radiol. 2009;82(977):380–385.10.1259/bjr/27737783
  • Jain SK, Gupta Y, Jain A, et al. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine. 2008;4(1):41–48.
  • Nahar M, Mishra D, Dubey V, et al. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine. 2008;4(3):252–261.
  • Young S, Wong M, Tabata Y, et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Controlled Release. 2005;109(1–3):256–274.10.1016/j.jconrel.2005.09.023
  • Tanigo T, Takaoka R, Tabata Y. Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Controlled Release. 2010;143(2):201–206.10.1016/j.jconrel.2009.12.027
  • Konishi M, Tabata Y, Kariya M, et al. In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J Controlled Release. 2005;103(1):7–19.10.1016/j.jconrel.2004.11.014
  • Doi N, Jo J, Tabata Y. Preparation of biodegradable gelatin nanospheres with a narrow size distribution for carrier of cellular internalization of plasmid DNA. J Biomater Sci Polym Ed. 2012;23:991–1004.10.1163/092050611X568214
  • Ishikawa H, Nakamura Y, Jo J, et al. Gelatin nanospheres incorporating siRNA for controlled intracellular release. Biomaterials. 2012;33(35):9097–9104.10.1016/j.biomaterials.2012.08.032
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–544.10.1126/science.1104274
  • Yukawa H, Nakagawa S, Yoshizumi Y, et al. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells. PLoS One. 2014;9(11):e110142.10.1371/journal.pone.0110142
  • Tomitaka A, Jo J, Aoki I, et al. Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflam Regener. 2014;34(1):045–055.10.2492/inflammregen.34.045
  • Coester C, Nayyar P, Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm. 2006;62(3):306–314.10.1016/j.ejpb.2005.09.009
  • Kommareddy S, Amiji M. Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine. 2007;3(1):32–42.
  • Tseng CL, Wang TW, Dong GC, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials. 2007;28(27):3996–4005.10.1016/j.biomaterials.2007.05.006
  • Wong C, Stylianopoulos T, Cui J, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Nat Acad Sci. 2011;108(6):2426–2431.10.1073/pnas.1018382108
  • Lee EJ, Khan SA, Lim KH. Gelatin nanoparticle preparation by nanoprecipitation. J Biomater Sci Polym Ed. 2011;22(4–6):753–771.10.1163/092050610X492093
  • Allouche J, Boissiere M, Hélary C, et al. Biomimetic core–shell gelatine/silica nanoparticles: a new example of biopolymer-based nanocomposites. J Mater Chem. 2006;16(30):3120–3125.10.1039/B604366F
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666.10.1016/j.biomaterials.2010.01.065
  • Tunnemann G, Ter-Avetisyan G, Martin RM, et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 2008;14(4):469–476.10.1002/psc.v14:4
  • Copolovici DM, Langel K, Eriste E, et al. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994.10.1021/nn4057269
  • Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Nat Acad Sci. 2004;101(1):16–22.10.1073/pnas.2235688100
  • Ferrauto G, Castelli DD, Terreno E, et al. In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magn Reson Med. 2013;69(6):1703–1711.10.1002/mrm.24411
  • Delalande A, Leduc C, Midoux P, et al. Efficient Gene Delivery by Sonoporation Is Associated with Microbubble Entry into Cells and the Clathrin-Dependent Endocytosis Pathway. Ultrasound Med Biol. 2015;41(7):1913–1926.10.1016/j.ultrasmedbio.2015.03.010
  • Liu D, Wang L, Wang Z, et al. Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields. Nano Lett. 2012;12(10):5117–5121.10.1021/nl301928z
  • Takeuchi T, Kosuge M, Tadokoro A, et al. Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate. ACS Chem Biol. 2006;1(5):299–303.10.1021/cb600127m
  • Nakase I, Konishi Y, Ueda M, et al. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Controlled Release. 2012;159(2):181–188.10.1016/j.jconrel.2012.01.016
  • Ringhieri P, Diaferia C, Galdiero S, et al. Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J Pept Sci. 2015;21(5):415–425.10.1002/psc.v21.5
  • Komin A, Russell LM, Hristova KA, et al. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv Drug Deliv Rev. 2016.
  • Motoyama K, Nishiyama R, Maeda Y, et al. Cholesterol-lowering effect of octaarginine-appended beta-cyclodextrin in Npc1-trap-CHO cells. Biol Pharm Bull. 2016;39(11):1823–1829.
  • Fischer D, Li Y, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–1131.10.1016/S0142-9612(02)00445-3
  • Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–5591.10.2147/IJN
  • Newman AP. Articular cartilage repair. Am J Sports Med. 1998;26(2):309–324.
  • Yanaga H, Yanaga K, Imai K, et al. Clinical application of cultured autologous human auricular chondrocytes with autologous serum for craniofacial or nasal augmentation and repair. Plast Reconstr Surg. 2006;117(6):2019–2030.10.1097/01.prs.0000210662.12267.de
  • Ramaswamy S, Greco JB, Uluer MC, et al. Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticles in tissue-engineered cartilage. Tissue Eng Part A. 2009;15(12):3899–3910.10.1089/ten.tea.2008.0677
  • Chen J, Wang F, Zhang Y, et al. In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng. 2012;40(12):2568–2578.10.1007/s10439-012-0621-5
  • Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev. 2015;95:2–14.10.1016/j.addr.2015.08.004
  • Fan J, Sun Y, Wang S, et al. Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots. Biomaterials. 2016;78:102–114.10.1016/j.biomaterials.2015.11.029
  • Maxwell T, Banu T, Price E, et al. Non-cytotoxic quantum dot-chitosan nanogel biosensing probe for potential cancer targeting agent. Nanomaterials. 2015;5(4):2359–2379.10.3390/nano5042359
  • Mattera L, Bhuckory S, Wegner KD, et al. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits. Nanoscale. 2016;8(21):11275–11283.10.1039/C6NR03261C
  • Chang E, Miller JS, Sun J, et al. Protease-activated quantum dot probes. Biochem Biophys Res Commun. 2005;334(4):1317–1321.10.1016/j.bbrc.2005.07.028
  • Chung EY, Ochs CJ, Wang Y, et al. Activatable and cell-penetrable multiplex FRET Nanosensor for profiling MT1-MMP activity in single cancer cells. Nano Lett. 2015;15(8):5025–5032.10.1021/acs.nanolett.5b01047
  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R182–R197.10.1088/0022-3727/36/13/202
  • Yen SK, Padmanabhan P, Selvan ST. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics. 2013;3(12):986–1003.10.7150/thno.4827

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.