741
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Effect of animal products and extracts on wound healing promotion in topical applications: a review

&
Pages 703-729 | Received 08 Dec 2016, Accepted 20 Feb 2017, Published online: 09 Mar 2017

References

  • Dryden SV, Shoemaker WG, Kim JH. Wound management and nutrition for optimal wound healing. Atlas Oral Maxillofac Surg Clin North Am. 2013;21(1):37–47.10.1016/j.cxom.2012.12.008
  • Stojadinovic A, Carlson JW, Schultz GS, et al. Topical advances in wound care. Gynecol Oncol. 2008;111(2 Suppl):S70–S80.10.1016/j.ygyno.2008.07.042
  • Schreml S, Szeimies RM, Prantl L, et al. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63(5):866–881.10.1016/j.jaad.2009.10.048
  • Hardwicke J, Schmaljohann D, Boyce D, et al. Epidermal growth factor therapy and wound healing–past, present and future perspectives. Surgeon. 2008;6(3):172–177.10.1016/S1479-666X(08)80114-X
  • Meyer-Ingold W. Wound therapy: growth factors as agents to promote healing. Trends Biotechnol. 1993;11(9):387–392.10.1016/0167-7799(93)90098-T
  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229.10.1177/0022034509359125
  • Azuma K, Ifuku S, Osaki T, et al. Preparation and biomedical applications of chitin and chitosan nanofibers. J Biomed Nanotechnol. 2014;10(10):2891–2920.10.1166/jbn.2014.1882
  • Dash M, Chiellini F, Ottenbrite RM, et al. Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014.10.1016/j.progpolymsci.2011.02.001
  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–1174.10.3390/md13031133
  • Prudden JF, Migel P, Hanson P, et al. The discovery of a potent pure chemical wound-healing accelerator. Am J Surg. 1970;119(5):560–564.10.1016/0002-9610(70)90175-3
  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–337.10.1016/j.biotechadv.2011.01.005
  • Divya K, Sharrel R, Jisha SM. A simple and effective method for extraction of high purity chitosan from shrimp shell waste. Proceedings of the International Conference on Advances in Applied Science and Environmental Engineering-ASEE; Kuala Lumpur, Malaysia; 2014.
  • Dornish M, Kaplan DS, Arepalli SR. Regulatory status of chitosan and derivatives. Chitosan-based systems for biopharmaceuticals. West Sussex: Wiley; 2012. p. 463–481.
  • Szymańska E, Winnicka K. Stability of chitosan – a challenge for pharmaceutical and biomedical applications. Mar Drugs. 2015;13(4):1819–1846.10.3390/md13041819
  • Nakagawa Y, Murai T, Hasegawa C, et al. Endotoxin contamination in wound dressings made of natural biomaterials. J Biomed Mater Res. 2003;66B(1):347–355.10.1002/(ISSN)1097-4636
  • Lee DW, Lim H, Chong HN, et al. Advances in chitosan material and its hybrid derivatives: a review. Open Biomater J. 2009;1:10–20.10.2174/1876502500901010010
  • Ueno H, Nakamura F, Murakami M, et al. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials. 2001;22(15):2125–2130.10.1016/S0142-9612(00)00401-4
  • Nishimura K, Ishihara C, Ukei S, et al. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine. 1986;4(3):151–156.10.1016/0264-410X(86)90002-2
  • Boucard N, Viton C, Agay D, et al. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials. 2007;28(24):3478–3488.10.1016/j.biomaterials.2007.04.021
  • Ishihara M, Nakanishi K, Ono K, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002;23(3):833–840.10.1016/S0142-9612(01)00189-2
  • Ong SY, Wu J, Moochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323–4332.10.1016/j.biomaterials.2008.07.034
  • Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20(15):1407–1414.10.1016/S0142-9612(99)00046-0
  • Deng C-M, He L-Z, Zhao M, et al. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydr Polym. 2007;69(3):583–589.10.1016/j.carbpol.2007.01.014
  • Alemdaroglu C, Degim Z, Celebi N, et al. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns. 2006;32(3):319–327.10.1016/j.burns.2005.10.015
  • Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, et al. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int Wound J. 2014;11(2):215–222.10.1111/iwj.2014.11.issue-2
  • Alsarra IA. Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol. 2009;45(1):16–21.10.1016/j.ijbiomac.2009.03.010
  • Azad AK, Sermsintham N, Chandrkrachang S, et al. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res. 2004;69B(2):216–222.10.1002/(ISSN)1097-4636
  • Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci. 2001;79:1324–1335.
  • Zheng L-Y, Zhu J-F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym. 2003;54(4):527–530.10.1016/j.carbpol.2003.07.009
  • Goy RC, Britto Dd, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros. 2009;19:241–247.
  • Wang CC, Su CH, Chen CC. Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res A. 2008;84(4):1006–1017.10.1002/(ISSN)1552-4965
  • Z-x Cai, X-m Mo, K-h Zhang, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11(9):3529–3539.
  • Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22(3):261–268.10.1016/S0142-9612(00)00183-6
  • Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res. 1997;34(1):21–28.10.1002/(ISSN)1097-4636
  • Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–958.10.1146/annurev.biochem.77.032207.120833
  • Yamada S, Yamamoto K, Ikeda T, et al. Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int. 2014;2014:1–8.
  • Fleck CA, Simman R. Modern collagen wound dressings: function and purpose. J Am Col Certif Wound Spec. 2010;2(3):50–54.
  • Silvipriya KS, Kumar KK, Bhat AR, et al. Collagen: animal sources and biomedical application. J App Pharm Sci. 2015;5(3):123–127.10.7324/JAPS
  • Wiegand C, Abel M, Ruth P, et al. Effect of the sterilization method on the performance of collagen type I on chronic wound parameters in vitro. J Biomed Mater Res B Appl Biomater. 2009;90(2):710–719.10.1002/jbm.b.v90b:2
  • Gorham SD, Srivastava S, French DA, et al. The effect of gamma-ray and ethylene oxide sterilization on collagen-based wound-repair materials. J Mater Sci Mater Med. 1993;4(1):40–49.10.1007/BF00122976
  • Kleinman HK, Murray JC, McGoodwin EB, et al. Connective tissue structure: cell binding to collagen. J Invest Dermatol. 1978;71(1):9–11.10.1111/1523-1747.ep12543641
  • Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Nat Acad Sci USA. 1978;75(2):871–875.10.1073/pnas.75.2.871
  • Mosher DF, Schad PE. Cross-linking of fibronectin to collagen by blood coagulation Factor XIIIa. J Clin Invest. 1979;64(3):781–787.10.1172/JCI109524
  • Vermylen J, Verstraete M, Fuster V. Role of platelet activation and fibrin formation in thrombogenesis. J Am Coll Cardiol. 1986;8(6 Suppl B):2b–9b.10.1016/S0735-1097(86)80002-X
  • Sweeney SM, DiLullo G, Slater SJ, et al. Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem. 2003;278(33):30516–30524.10.1074/jbc.M304237200
  • Spenceri EA, Nahass GT. Topically applied bovine collagen in the treatment of ulcerative necrobiosis lipoidica diabeticorum. Arch Dermatol. 1997;133(7):817–818.
  • Brett D. A review of collagen and collagen-based wound dressings. Wounds. 2008;20(12):347–356.
  • Ulrich D, Smeets R, Unglaub F, et al. Effect of oxidized regenerated cellulose/collagen matrix on proteases in wound exudate of patients with diabetic foot ulcers. J Wound Ostomy Continence Nurs. 2011;38(5):522–528.10.1097/WON.0b013e31822ad290
  • Shah SV, Chakravarthy D. Evaluation of a bovine 100% native collagen for the treatment of chronic wounds: a case series. J Wound Ostomy Continence Nurs. 2015;42(3):226–234.10.1097/WON.0000000000000124
  • Hart J, Silcock D, Gunnigle S, et al. The role of oxidised regenerated cellulose/collagen in wound repair: effects in vitro on fibroblast biology and in vivo in a model of compromised healing. Int J Biochem Cell Biol. 2002;34(12):1557–1570.10.1016/S1357-2725(02)00062-6
  • Griswold JA, Cepica T, Rossi L, et al. A comparison of xeroform and skintemp dressings in the healing of skin graft donor sites. J Burn Care Rehabil. 1995;16(2 Pt 1):136–140.10.1097/00004630-199503000-00008
  • Vin F, Teot L, Meaume S. The healing properties of Promogran in venous leg ulcers. J Wound Care. 2002;11(9):335–341.10.12968/jowc.2002.11.9.26438
  • Nisi G, Brandi C, Grimaldi L, et al. Use of a protease-modulating matrix in the treatment of pressure sores. Chir Ital. 2005;57(4):465–468.
  • Blume P, Driver VR, Tallis AJ, et al. Formulated collagen gel accelerates healing rate immediately after application in patients with diabetic neuropathic foot ulcers. Wound Repair Regen. 2011;19(3):302–308.10.1111/j.1524-475X.2011.00669.x
  • Graumlich JF, Blough LS, McLaughlin RG, et al. Healing pressure ulcers with collagen or hydrocolloid: a randomized, controlled trial. J Am Geriatr Soc. 2003;51(2):147–154.10.1046/j.1532-5415.2003.51051.x
  • Donaghue VM, Chrzan JS, Rosenblum BI, et al. Evaluation of a collagen-alginate wound dressing in the management of diabetic foot ulcers. Adv Wound Care. 1998;11(3):114–119.
  • Singh O, Gupta SS, Soni M, et al. Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study. J Cutan Aesthet Surg. 2011;4(1):12–16.
  • Mullins RJ, Richards C, Walker T. Allergic reactions to oral, surgical and topical bovine collagen. Anaphylactic risk for surgeons. Aust N Z J Ophthalmol. 1996;24(3):257–260.10.1111/ceo.1996.24.issue-3
  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1–2):1–22.10.1016/S0378-5173(01)00691-3
  • Westgate S, Cutting KF, DeLuca G, et al. Collagen dressings Made Easy. Wounds UK. 2012;8(1):1–4.
  • Olaitan PB, Adeleke OE, Ola IO. Honey: a reservoir for microorganisms and an inhibitory agent for microbes. Afr Health Sci. 2007;7(3):159–165.
  • da Silva PM, Gauche C, Gonzaga LV, et al. Honey: chemical composition, stability and authenticity. Food Chem. 2016;196:309–323.10.1016/j.foodchem.2015.09.051
  • El Sohaimy SA, Masry SHD, Shehata MG. Physicochemical characteristics of honey from different origins. Ann Agric Sci. 2015;60(2):279–287.
  • Eteraf-Oskouei T, Najafi M. Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci. 2013;16(6):731–742.
  • Molan P, Rhodes T. Honey: a biologic wound dressing. Wounds. 2015;27(6):141–151.
  • Majtan J. Honey: an immunomodulator in wound healing. Wound Repair Regen. 2014;22(2):187–192.10.1111/wrr.12117
  • Yaghoobi R, Kazerouni A, kazerouni O. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: a review. Jundishapur J Nat Pharm Prod. 2013;8(3):100–104.10.17795/jjnpp-
  • Molan PC. Re-introducing honey in the management of wounds and ulcers – theory and practice. Ostomy Wound Manage. 2002;48(11):28–40.
  • Adams CJ, Manley-Harris M, Molan PC. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2009;344(8):1050–1053.10.1016/j.carres.2009.03.020
  • Pieper B. Honey-based dressings and wound care: an option for care in the United States. J Wound Ostomy Continence Nurs. 2009;36(1):60–66; quiz 67–68.10.1097/01.WON.0000345177.58740.7d
  • Simon A, Traynor K, Santos K, et al. Medical honey for wound care—still the ‘latest resort’? Evid Based Complement Altern Med. 2009;6(2):165–173.10.1093/ecam/nem175
  • Al-Waili N, Salom K, Al-Ghamdi AA. Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice. Sci World J. 2011;11:766–787.10.1100/tsw.2011.78
  • van den Berg AJ, van den Worm E, van Ufford HC, et al. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J Wound Care. 2008;17(4):172–178, 176–178.10.12968/jowc.2008.17.4.28839
  • Alam F, Islam MA, Gan SH, et al. Honey: a potential therapeutic agent for managing diabetic wounds. Evid Based Complement Altern Med. 2014;2014:1–16.
  • Buttner A, Thieme D. Side effects of anabolic androgenic steroids: pathological findings and structure-activity relationships. Handb Exp Pharmacol. 2010;195:459–484.
  • Lee D-M, Bhat AR, Kim Y-W, et al. Effects of porcine testis extract on wound healing in rat. Anim Cells Syst. 2012;16(6):469–478.10.1080/19768354.2012.726645
  • Nandrolone [Internet]. National center for biotechnology information. 2016 [cited 2016 Nov 18]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/nandrolone#section=Top
  • Testoterone [Internet]. National center for biotechnology information. 2016 [cited 2016 Nov 18]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/6013#section=Top
  • Estradiol [Internet]. National center for biotechnology information. 2016 [cited 2016 Nov 18]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5757#section=Odor
  • Lee EJ, Kamli MR, Bhat AR, et al. Effect of porcine placenta steroid extract on myogenic satellite cell proliferation, transdifferentiation, and lipid accumulation. In Vitro Cell Dev Biol Anim. 2012;48(5):326–333.10.1007/s11626-012-9512-1
  • Kim KC, Heo JH, Yoon JK, et al. Enhanced anti-inflammatory effects of gamma-irradiated pig placenta extracts. Korean J Food Sci Anim Resour. 2015;35(3):293–298.
  • Demling RH. The role of anabolic hormones for wound healing in catabolic states. J Burns Wounds. 2005;4:e2.
  • Chiu ML, O’Keefe EJ. Placental keratinocyte growth factor: partial purification and comparison with epidermal growth factor. Arch Biochem Biophys. 1989;269(1):75–85.10.1016/0003-9861(89)90088-X
  • Presta M, Mignatti P, Mullins DE, et al. Human placental tissue stimulates bovine capillary endothelial cell growth, migration and protease production. Biosci Rep. 1985;5(9):783–790.10.1007/BF01119877
  • Wu CH, Chang GY, Chang WC, et al. Wound healing effects of porcine placental extracts on rats with thermal injury. Br J Dermatol. 2003;148(2):236–245.10.1046/j.1365-2133.2003.05164.x
  • Hueber F, Schaefer H, Wepierre J. Role of transepidermal and transfollicular routes in percutaneous absorption of steroids: in vitro studies on human skin. Skin Pharm Phys. 1994;7(5):237–244.10.1159/000211300
  • Padamwar MN, Pawar AP. Silk sericin and its applications: a review. J Sci Ind Res. 2004;63:323–329.
  • Patel R, Modasiya MK. Sericin: pharmaceutical applications. Int J Res Pharm Biomed Sci. 2011;2(323):913–917.
  • Terada S, Nishimura T, Sasaki M, et al. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology. 2002;40(1–3):3–12.10.1023/A:1023993400608
  • Aramwit P, Kanokpanont S, Nakpheng T, et al. The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci. 2010;11(5):2200–2211.10.3390/ijms11052200
  • Tsujimoto K, Takagi H, Takahashi M, et al. Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin. J Biochem. 2001;129(6):979–986.10.1093/oxfordjournals.jbchem.a002946
  • Siritientong T, Srichana T, Aramwit P. The effect of sterilization methods on the physical properties of silk sericin scaffolds. AAPS Pharmscitech. 2011;12(2):771–781.10.1208/s12249-011-9641-y
  • Aramwit P, Namviriyachote N. The influence of gamma irradiation and ethylene oxide treatment on the physical properties of silk sericin film. J Biobased Mater Bioenergy. 2013;7(2):283–289.10.1166/jbmb.2013.1338
  • Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453(7193):314–321.10.1038/nature07039
  • Aramwit P, Kanokpanont S, De-Eknamkul W, et al. The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J Biomater Sci Polym Ed. 2009;20(9):1295–1306.10.1163/156856209X453006
  • Tsubouchi K, Igarashi Y, Takasu Y, et al. Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem. 2005;69(2):403–405.10.1271/bbb.69.403
  • Aramwit P, Sangcakul A. The effects of sericin cream on wound healing in rats. Biosci Biotechnol Biochem. 2007;71(10):2473–2477.10.1271/bbb.70243
  • Siritienthong T, Ratanavaraporn J, Aramwit P. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds. Int J Pharm. 2012;439(1–2):175–186.
  • Aramwit P, Palapinyo S, Srichana T, et al. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch Dermatol Res. 2013;305(7):585–594.10.1007/s00403-013-1371-4
  • Siritientong T, Angspatt A, Ratanavaraporn J, et al. Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites. Pharm Res. 2014;31(1):104–116.10.1007/s11095-013-1136-y
  • Hasatsri S, Angspatt A, Aramwit P. Randomized clinical trial of the innovative bilayered wound dressing made of silk and gelatin: safety and efficacy tests using a split-thickness skin graft model. Evid-Based Complement Altern Med. 2015;2015:1–8.
  • Aramwit P, Siritienthong T, Srichana T, et al. Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/PVA scaffolds. Cells Tissues Organs. 2013;197(3):224–238.10.1159/000345600
  • Rajendran R, Balakumar C, Sivakumar R, et al. Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J Text Inst. 2012;103(4):458–462.10.1080/00405000.2011.586151
  • Senakoon W, Nuchadomrong S, Sirimungkararat S, et al. Antibacterial action of eri (samia ricini) sericin against Escherichia coli and staphylococcus aureus. As J Food Ag-Ind. 2009(Special Issue):S222–S228.
  • Jassim KN, Al-Saree OJ. Study of the antimicrobial activity of silk sericin from silkworm bombyx mori. Iraqi J Comm Med. 2010;23(2):130–133.
  • Kaur J, Rajkhowa R, Afrin T, et al. Facts and myths of antibacterial properties of silk. Biopolymers. 2014;101(3):237–245.10.1002/bip.22323
  • Aramwit P, Towiwat P, Srichana T. Anti-inflammatory potential of silk sericin. Nat Prod Commun. 2013;8(4):501–504.
  • Khampieng T, Aramwit P, Supaphol P. Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol. 2015;80:636–643.10.1016/j.ijbiomac.2015.07.018
  • Padamwar MN, Pawar AP, Daithankar AV, et al. Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol. 2005;4(4):250–257.10.1111/jcd.2005.4.issue-4
  • Aramwit P, Kanokpanont S, De-Eknamkul W, et al. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng. 2009;107(5):556–561.10.1016/j.jbiosc.2008.12.012
  • Guzmán F, Barberis S, Illanes A [ Internet]. Peptide synthesis: chemical or enzymatic. Electron J Biotechnol. 2007;10:279–314. 22/11/2016. Available from: http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v10n2-13
  • Bell LN. Peptide stability in solids and solutions. Biotechnol Prog. 1997;13(4):342–346.
  • Mu L, Tang J, Liu H, et al. A potential wound-healing-promoting peptide from salamander skin. FASEB J. 2014;28(9):3919–3929.10.1096/fj.13-248476
  • Liu H, Mu L, Tang J, et al. A potential wound healing-promoting peptide from frog skin. Int J Biochem Cell Biol. 2014;49:32–41.10.1016/j.biocel.2014.01.010
  • Mashreghi M, Rezazade Bazaz M, Mahdavi Shahri N, et al. Topical effects of frog “Rana ridibunda” skin secretions on wound healing and reduction of wound microbial load. J Ethnopharmacol. 2013;145(3):793–797.10.1016/j.jep.2012.12.016
  • Song Y, Lu Y, Wang L, et al. Purification, characterization and cloning of two novel tigerinin-like peptides from skin secretions of Fejervarya cancrivora. Peptides. 2009;30(7):1228–1232.10.1016/j.peptides.2009.03.020
  • Sheafor B, Davidson EW, Parr L, et al. Antimicrobial peptide defenses in the salamander, ambystoma tigrinum, against emerging amphibian pathogens. J Wildl Dis. 2008;44(2):226–236.10.7589/0090-3558-44.2.226
  • Yamada KM. Fibronectin peptides in cell migration and wound repair. J Clin Invest. 2000;105(11):1507–1509.10.1172/JCI10119
  • Kawasumi A, Sagawa N, Hayashi S, et al. Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Top Microbiol Immunol. 2013;367:33–49.
  • Rezazade Bazaz M, Mashreghi M, Mahdavi Shahri N, et al. Pharmaceutical application of frog skin on full-thickness skin wound healing in mice. Pharm Biol. 2013;51(12):1600–1606.10.3109/13880209.2013.804846
  • Perrimon N, Bernfield M. Cellular functions of proteoglycans – an overview. Semin Cell Dev Biol. 2001;12(2):65–67.10.1006/scdb.2000.0237
  • Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.10.1016/j.matbio.2015.02.003
  • Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001;12(2):69–78.10.1006/scdb.2000.0243
  • Ito G, Kobayashi T, Takeda Y, et al. Proteoglycan from salmon nasal cartridge [corrected] promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor. Biochem Biophys Res Commun. 2015;456(3):792–798.10.1016/j.bbrc.2014.12.037
  • Kakizaki I, Tatara Y, Majima M, et al. Identification of proteoglycan from salmon nasal cartilage. Arch Biochem Biophys. 2011;506(1):58–65.10.1016/j.abb.2010.10.025
  • Watanabe H, Yamada Y, Kimata K. Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem. 1998;124(4):687–693.10.1093/oxfordjournals.jbchem.a022166
  • Kakizaki I, Mineta T, Sasaki M, et al. Biochemical and atomic force microscopic characterization of salmon nasal cartilage proteoglycan. Carbohydr Polym. 2014;103:538–549.10.1016/j.carbpol.2013.12.083
  • Ishikawa LLW, Colavite PM, da Rosa LC, et al. Commercial bovine proteoglycan is highly arthritogenic and can be used as an alternative antigen source for PGIA model. Biomed Res Int. 2014;2014:1–12.
  • Poole AR, Reiner A, Tang L-H, et al. Proteoglycans from bovine nasal cartilage. J Biol Chem. 1980;255(19):9295–9305.
  • Kobayashi T, Kakizaki I, Nozaka H, et al. Chondroitin sulfate proteoglycans from salmon nasal cartilage inhibit angiogenesis. Biochem Biophys Rep. 2017;9:72–78.
  • Hardingham TE, Fosang AJ. Proteoglycans: many forms and many functions. Faseb J. 1992;6(3):861–870.
  • Gallo RL. Proteoglycans and cutaneous vascular defense and repair. J Invest Dermatol Symp Proc. 2000;5(1):55–60.10.1046/j.1087-0024.2000.00008.x
  • Ghatak S, Maytin EV, Mack JA, et al. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int J Cell Biol. 2015;2015:834893.
  • Bunman S, Aramwit P, Larbcharoensub N, et al. Application of proteoglycans from fish cartilage for the acceleration of burn wound healing. Thai J Pharm Sci. 2015;39(3):64–69.
  • Kudo S, Ito S, Yoshihara S, et al. Safety evaluation of salmon nasal cartilage powder containing proteoglycan as a major constituent. J Jpn Soc Food Sci. 2011;58(11):542–547.10.3136/nskkk.58.542
  • Frenkel JS. The role of hyaluronan in wound healing. Int Wound J. 2014;11(2):159–163.10.1111/iwj.2014.11.issue-2
  • Necas J, Bartosikova L, Brauner P, et al. Hyaluronic acid (hyaluronan): a review. Vet Med. 2008;53(8):397–411.
  • Kogan G, Soltes L, Stern R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.
  • Murado MA, Montemayor MI, Cabo ML, et al. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Process.. 2012;90(3):491–498.10.1016/j.fbp.2011.11.002
  • Price RD, Berry MG, Navsaria HA. Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthet Surg. 2007;60(10):1110–1119.10.1016/j.bjps.2007.03.005
  • Price RD, Myers S, Leigh IM, et al. The role of hyaluronic acid in wound healing: assessment of clinical evidence. Am J Clin Dermatol. 2005;6(6):393–402.10.2165/00128071-200506060-00006
  • Swann DA. Studies on hyaluronic acid. I. The preparation and properties of rooster comb hyaluronic acid. Biochim Biophys Acta Gen Subj. 1968;156(1):17–30.10.1016/0304-4165(68)90099-8
  • Savani RC, Cao G, Pooler PM, et al. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem. 2001;276(39):36770–36778.10.1074/jbc.M102273200
  • Voigt J, Driver VR. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. 2012;20(3):317–331.10.1111/wrr.2012.20.issue-3
  • Cerqueira MT, da Silva LP, Santos TC, et al. Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing. Tissue Eng Part A. 2014;20(9–10):1369–1378.10.1089/ten.tea.2013.0460
  • Humbert P, Mikosinki J, Benchikhi H, et al. Efficacy and safety of a gauze pad containing hyaluronic acid in treatment of leg ulcers of venous or mixed origin: a double-blind, randomised, controlled trial. Int Wound J. 2013;10(2):159–166.10.1111/iwj.2013.10.issue-2
  • Costagliola M, Agrosì M. Second-degree burns: a comparative, multicenter, randomized trial of hyaluronic acid plus silver sulfadiazine vs. silver sulfadiazine alone. Curr Med Res Opin. 2005;21(8):1235–1240.10.1185/030079905X56510
  • Manna F, Dentini M, Desideri P, et al. Comparative chemical evaluation of two commercially available derivatives of hyaluronic acid (hylaform from rooster combs and restylane from streptococcus) used for soft tissue augmentation. J Eur Acad Dermatol Venereol. 1999;13(3):183–192.10.1111/jdv.1999.13.issue-3
  • Wang B, Yang W, McKittrick J, et al. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci. 2016;76:229–318.10.1016/j.pmatsci.2015.06.001
  • Vasconcelos A, Cavaco-Paulo A. The use of keratin in biomedical applications. Curr Drug Targets. 2013;14(5):612–619.10.2174/1389450111314050010
  • Schrooyen PMM, Dijkstra PJ, Oberthür RC, et al. Stabilization of solutions of feather keratins by sodium dodecyl sulfate. J Colloid Interface Sci. 2001;240(1):30–39.10.1006/jcis.2001.7673
  • Zhang Q, Shan G, Cao P, et al. Mechanical and biological properties of oxidized horn keratin. Mater Sci Eng C. 2015;47:123–134.10.1016/j.msec.2014.11.051
  • Wang J, Hao S, Luo T, et al. Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. Mater Sci Eng C. 2016;68:768–773.10.1016/j.msec.2016.07.035
  • Ji Y, Chen J, Lv J, et al. Extraction of keratin with ionic liquids from poultry feather. Sep Purif Technol. 2014;132:577–583.10.1016/j.seppur.2014.05.049
  • Park M, Shin HK, Kim B-S, et al. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo. Mater Sci Eng C. 2015;55:88–94.10.1016/j.msec.2015.03.033
  • Fortunati E, Aluigi A, Armentano I, et al. Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Mater Sci Eng C. 2015;47:394–406.10.1016/j.msec.2014.11.007
  • Wang Y-X, Cao X-J. Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem. 2012;47(5):896–899.10.1016/j.procbio.2012.02.013
  • Davidson A, Jina NH, Marsh C, et al. Do functional keratin dressings accelerate epithelialization in human partial thickness wounds? A randomized controlled trial on skin graft donor sites. Eplasty. 2013;13:e45.
  • Pechter PM, Gil J, Valdes J, et al. Keratin dressings speed epithelialization of deep partial-thickness wounds. Wound Repair Regen. 2012;20(2):236–242.10.1111/wrr.2012.20.issue-2
  • Wang J, Hao S, Luo T, et al. Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B. 2017;149:341–350.10.1016/j.colsurfb.2016.10.038
  • Loan F, Cassidy S, Marsh C, et al. Keratin-based products for effective wound care management in superficial and partial thickness burns injuries. Burns. 2016;42(3):541–547.10.1016/j.burns.2015.10.024
  • Burnett LR, Rahmany MB, Richter JR, et al. Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials. 2013;34(11):2632–2640.10.1016/j.biomaterials.2012.12.022
  • Rahmany MB, Hantgan RR, Van Dyke M. A mechanistic investigation of the effect of keratin-based hemostatic agents on coagulation. Biomaterials. 2013;34(10):2492–2500.10.1016/j.biomaterials.2012.12.008
  • Jang M-K, Kong B-G, Jeong Y-I, et al. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci Part A Polym Chem. 2004;42(14):3423–3432.10.1002/(ISSN)1099-0518
  • Hajji S, Younes I, Ghorbel-Bellaaj O, et al. Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol. 2014;65:298–306.10.1016/j.ijbiomac.2014.01.045
  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1–2):1–22.10.1016/S0378-5173(01)00691-3
  • Song E, Yeon Kim S, Chun T, et al. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006;27(15):2951–2961.10.1016/j.biomaterials.2006.01.015
  • Nagai T, Yamashita E, Taniguchi K, et al. Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem. 2001;72(4):425–429.10.1016/S0308-8146(00)00249-1
  • Sakaguchi M, Toda M, Ebihara T, et al. IgE antibody to fish gelatin (type I collagen) in patients with fish allergy. J Allergy Clin Immunol. 2000;106(3):579–584.10.1067/mai.2000.108499
  • Ingle R, Levin J, Polinder K. Wound healing with honey – a randomised controlled trial. S Afr Med J. 2006;96(9):831–835.
  • Maghsoudi H, Salehi F, Khosrowshahi MK, et al. Comparison between topical honey and mafenide acetate in treatment of burn wounds. Ann Burns Fire Disasters. 2011;24(3):132–137.
  • Baghel PS, Shukla S, Mathur RK, et al. A comparative study to evaluate the effect of honey dressing and silver sulfadiazene dressing on wound healing in burn patients. Indian J Plast Surg. 2009;42(2):176–181.
  • Gulati S, Qureshi A, Srivastava A, et al. A prospective randomized study to compare the effectiveness of honey dressing vs. povidone iodine dressing in chronic wound healing. Indian J Surg. 2014;76(3):193–198.10.1007/s12262-012-0682-6
  • Subrahmanyam M. Honey dressing accelerates split-thickness skin graft donor site healing. Indian J Surg. 2015;77(Suppl 2):261–263.
  • Kamaratos AV, Tzirogiannis KN, Iraklianou SA, et al. Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers. Int Wound J. 2014;11(3):259–263.10.1111/j.1742-481X.2012.01082.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.