432
Views
7
CrossRef citations to date
0
Altmetric
Articles

Extemporaneously preparative biodegradable injectable polymer systems exhibiting temperature-responsive irreversible gelation

, , , , &
Pages 1427-1443 | Received 23 Apr 2017, Accepted 10 May 2017, Published online: 23 May 2017

References

  • Park MH, Joo MK, Choi BG, et al. Biodegradable thermogels. Acc Chem Res. 2012;45:424–433.10.1021/ar200162j
  • Moon HJ, Ko DY, Park MH, et al. Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev. 2012;41:4860–4883.10.1039/c2cs35078e
  • Nagahama K, Takahashi A, Ohya Y. Biodegradable polymers exhibiting temperature-responsive sol–gel transition as injectable biomedical materials. React Funct Polym. 2013;73:979–985.10.1016/j.reactfunctpolym.2012.11.003
  • Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromol Biosci. 2010;10:563–579.10.1002/mabi.200900402
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37:1473–1481.10.1039/b713009k
  • Yeon B, Park MH, Moon HJ, et al. 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel. Biomacromolecules. 2013;14:3256–3266.10.1021/bm400868j
  • Nagahama K, Ouchi T, Ohya Y. Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Adv Funct Mater. 2008;18:1220–1231.10.1002/adfm.200700587
  • Oyama N, Minami H, Kawano D, et al. A nanocomposite approach to develop biodegradable thermogels exhibiting excellent cell-compatibility for injectable cell delivery. Biomater Sci. 2014;2:1057–1062.10.1039/c4bm00074a
  • Choi S, Baudys M, Kim SW. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm Res. 2004;21:827–831.10.1023/B:PHAM.0000026435.27086.94
  • Manokruang K, Lee DS. Albumin-conjugated pH/thermo responsive poly(amino urethane) multiblock copolymer as an injectable hydrogel for protein delivery. Macromol Biosci. 2013;13:1195–1203.10.1002/mabi.v13.9
  • Li K, Yu L, Liu X, et al. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials. 2013;34:2834–2842.10.1016/j.biomaterials.2013.01.013
  • Zhang Z, Ni J, Chen L, et al. Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials. 2011;32:4725–4736.10.1016/j.biomaterials.2011.03.046
  • Yu L, Hu H, Chen L, et al. Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms. Biomater Sci. 2014;2:1100–1109.10.1039/c4bm00029c
  • Hong JH, Choe JW, Kwon GY, et al. The effects of barrier materials on reduction of pericardial adhesion formation in rabbits: a comparative study of a hyaluronan-based solution and a temperature sensitive poloxamer solution/gel material. J Surg Res. 2011;166:206–213.10.1016/j.jss.2010.09.034
  • Chen C, Chen L, Cao L, et al. Effects of L-lactide and D,L-lactide in poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) on the bulk states of triblock copolymers, and their thermogellation and biodegradation in water. RSC Adv. 2014;4:8789–8798.10.1039/c3ra47494a
  • Hwang MJ, Suh JM, Bae YH, et al. Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules. 2005;6:885–890.10.1021/bm049347a
  • Bae SJ, Suh JM, Sohn YS, et al. Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules. 2005;38:5260–5265.10.1021/ma050489m
  • Bae SJ, Joo MK, Jeong Y, et al. Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymers aqueous solution. Macromolecules. 2006;39:4873–4879.10.1021/ma060153s
  • Liu CB, Gong CY, Huang MJ, et al. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater. 2008;84:164–175.
  • Jiang Z, You Y, Gu Q, et al. Effect of microstructures on the phase transition behavior of P(CL-GL)-PEG-P(CL-GL) triblock copolymer aqueous solutions. Macromol Rapid Commun. 2008;29:1264–1268.10.1002/marc.v29:14
  • Yoshida Y, Takahashi A, Kuzuya A, et al. Instant preparation of a biodegradable injectable polymer formulation exhibiting a temperature-responsive sol-gel transition. Polym J. 2014;46:632–635.10.1038/pj.2014.30
  • Yoshida Y, Kawahara K, Inamoto K, et al. Biodegradable injectable polymer systems exhibiting a temperature-responsive irreversible sol-to-gel transition by covalent bond fromation. ACS Biomater Sci Eng. 2017;3:56–67.10.1021/acsbiomaterials.6b00581
  • Yoshida Y, Takada K, Ohya Y, et al. Submitted for publication.
  • Nair DP, Podgórski M, Chatani S, et al. The Thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater. 2014;26:724–744.10.1021/cm402180t
  • Hoyle CE, Lee TY, Roper T. Thiol–enes: chemistry of the past with promise for the future. J Polym Sci A Polym Chem. 2004;42:5301–5338.10.1002/(ISSN)1099-0518
  • Lowe B. Thiol-ene ‘click’ reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.10.1039/B9PY00216B
  • Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed. 2010;49:1540–1573.10.1002/anie.200903924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.