649
Views
14
CrossRef citations to date
0
Altmetric
Articles

Polydopamine/polyethyleneimine complex adhered to micrometer-sized magnetic carbon fibers for high-efficiency hemoperfusion

, , , , , , & show all
Pages 1444-1468 | Received 19 Feb 2017, Accepted 11 May 2017, Published online: 19 May 2017

References

  • Teotia RS, Kalita D, Singh AK, et al. Bifunctional polysulfone-chitosan composite hollow fiber membrane for bioartificial liver. ACS Biomater Sci Eng. 2015;1(6):372–381.10.1021/ab500061j
  • Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 2014;11(3):166–176.
  • Wang Z, Cao Y, Wei H, et al. Bilirubin adsorption properties of water-soluble adsorbents with different cyclodextrin cavities in plasma dialysis system. Colloids Surf, B. 2012;90:248–253.10.1016/j.colsurfb.2011.10.006
  • Tang T, Li X, Xu Y, et al. Bilirubin adsorption on amine/methyl bifunctionalized SBA-15 with platelet morphology. Colloids Surf, B. 2011;84:571–578.10.1016/j.colsurfb.2011.02.019
  • Guo L, Zhang L, Zhang J, et al. Hollow mesoporous carbon spheres-an excellent bilirubin adsorbent. Chem Commun. 2009;40:6071–6073.10.1039/b911083f
  • Tao G, Zhang L, Hua Z, et al. Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon. 2014;66:547–559.10.1016/j.carbon.2013.09.037
  • Mueller BR. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon. Carbon. 2010;48(12):3607–3615.10.1016/j.carbon.2010.06.011
  • Jin G, Yao QH, Zhang SZ, et al. Surface modifying of microporous PTFE capillary for bilirubin removing from human plasma and its blood compatibility. Mater Sci Eng, C. 2008;28(8):1480–1488.10.1016/j.msec.2008.04.008
  • Asano T, Tsuru K, Hayakawa S, et al. Bilirubin adsorption property of sol-gel-derived titania particles for blood purification therapy. Acta Biomater. 2008;4(4):1067–1072.10.1016/j.actbio.2008.02.024
  • Piemonte V, Turchetti L, Annesini MC. Bilirubin removal from albumin-containing solutions: dynamic adsorption on anionic resin. Asia-Pac J Chem Eng. 2010;5(5):708–713.
  • Zhang LX, Zhu M, Guo LM, et al. Bilirubin adsorption property of mesoporous silica and amine-grafted mesoporous silica. Nano-Micro Lett. 2009;1(1):14–18.10.1007/BF03353599
  • Liu R-L, Ji W-J, He T, et al. Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route for CO2 capture and haemoperfusion. Carbon. 2014;76:84–95.10.1016/j.carbon.2014.04.052
  • Ouyang A, Gong Q, Liang J. Carbon nanotube-chitosan composite beads with radially aligned channels and nanotube-exposed walls for bilirubin adsorption. Adv Eng Mater. 2015;17:460–466.10.1002/adem.201400250
  • Shi W, Cao H, Song C, et al. Poly(pyrrole-3-carboxylic acid)-alumina composite membrane for affinity adsorption of bilirubin. J Membr Sci. 2010;353:151–158.10.1016/j.memsci.2010.02.048
  • Wei H, Han L, Tang Y, et al. Highly flexible heparin-modified chitosan/graphene oxide hybrid hydrogel as a super bilirubin adsorbent with excellent hemocompatibility. J Mater Chem, B. 2015;3:1646–1654.10.1039/C4TB01673D
  • Cha C, Shin SR, Annabi N, et al. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano. 2013;7(4):2891–2897.10.1021/nn401196a
  • Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat Med. 2014;20:1211–1216.10.1038/nm.3640
  • Fang W, Yang S, Wang X-L, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem. 2017;19:1794–1827. doi:10.1039/C6GC03206K
  • Chen S, Cao Y, Feng J. Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS Appl Mater Interfaces. 2014;6:349–356.10.1021/am404394g
  • Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–430.10.1126/science.1147241
  • Yang H-C, Liao K-J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J Mater Chem, A. 2014;2:10225–10230.10.1039/c4ta00143e
  • Cong Y, Xia T, Zou M, et al. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem, B. 2014;2:3450–3461.10.1039/c4tb00460d
  • Lin L-S, Cong Z-X, Cao J-B, et al. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 2014;8(4):3876–3883.10.1021/nn500722y
  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115.10.1021/cr400407a
  • Yang H-C, Luo J, Lv Y, et al. Surface engineering of polymer membranes via mussel-inspired chemistry. J Membr Sci. 2015;483:42–59.10.1016/j.memsci.2015.02.027
  • Xi Z-Y, Xu Y-Y, Zhu L-P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J Membr Sci. 2009;327:244–253.10.1016/j.memsci.2008.11.037
  • Hong S, Na YS, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Func Mater. 2012;22:4711–4717.10.1002/adfm.v22.22
  • Jiang J, Zhu L, Zhu L, et al. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces. 2013;5:12895–12904.10.1021/am403405c
  • Wei H, Ren J, Han B, et al. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids Surf, B. 2013;110:22–28.10.1016/j.colsurfb.2013.04.008
  • Liu R-L, Li X-Q, Liu H-Q, et al. Eco-friendly fabrication of sponge-like magnetically carbonaceous fiber aerogel for high efficiency oil-water separation. RSC Adv. 2016;6:30301–30310.10.1039/C6RA02794F
  • Liu R-L, Liu Y, Zhou X-Y, et al. Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Biores Technol. 2014;154:138–147.10.1016/j.biortech.2013.12.034
  • Rad AY, Yavuz H, Kocakulak M, et al. Bilirubin removal from human plasma with albumin immobilised magnetic poly(2-hydroxyethyl methacrylate) beads. Macromol Biosci. 2003;3:471–476.10.1002/(ISSN)1616-5195
  • Shi W, Shen Y, Jiang H, et al. Lysine-attached anodic aluminum oxide (AAO)-silica affinity membrane for bilirubin removal. J Membr Sci. 2010;349:333–340.10.1016/j.memsci.2009.11.066
  • Lv Y, Yang H-C, Liang H-Q, et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J Membr Sci. 2015;476:50–58.10.1016/j.memsci.2014.11.024
  • Liu R-L, Zhang Z-Q, Jing W-H, et al. β-Cyclodextrin anchoring onto pericarpium granati-derived magnetic mesoporous carbon for selective capture of lopid in human serum and pharmaceutical wastewater samples. Mater Sci Eng, C. 2016;62:605–613.10.1016/j.msec.2016.02.004
  • Sivadas DL, Narasimman R, Rajeev R, et al. Solvothermal synthesis of microporous superhydrophobic carbon with tunable morphology from natural cotton for carbon dioxide and organic solvent removal applications. J Mater Chem, A. 2015;3:16213–16221.10.1039/C5TA01874A
  • Hao G-P, Li W-C, Qian D, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater. 2010;22:853–857.10.1002/adma.v22:7
  • Lv Y, Du Y, Qiu W-Z, et al. Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability. ACS Appl Mater Interfaces. 2017;9(3):2966–2972.10.1021/acsami.6b13761
  • Liu R-L, Yu P, Luo Z-M, et al. Single-helix carbon microcoils prepared via Fe(III)-osmotically induced shape transformation of zucchini (Cucurbita pepo L.) for enhanced adsorption and antibacterial activities. Chem Eng J. 2017;315:437–447.
  • Zhao J, Song L, Shi Q, et al. Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface. ACS Appl Mater Interfaces. 2013;5:5260–5268.10.1021/am401098u
  • Kaleekkal NJ, Thanigaivelan A, Durga M, et al. Graphene oxide nanocomposite incorporated poly(ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications. Ind Eng Chem Res. 2015;54:7899–7913.10.1021/acs.iecr.5b01655
  • Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681–5703.10.1016/j.biomaterials.2004.01.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.