79
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of end segment on physicochemical properties and platelet compatibility of poly(propylene glycol)-initiated poly(methyl methacrylate)

, , , , &
Pages 1572-1587 | Received 12 Feb 2017, Accepted 25 May 2017, Published online: 05 Jun 2017

References

  • Okano T, Nishiyama S, Shinohara I, et al. Role of microphase separated structure on the interfacial interaction of polymer with blood. Artif Organs. 1979;3(Suppl):253–256.
  • Okano T, Nishiyama S, Shinohara I, et al. Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. J Biomed Mater Res. 1981;15:393–402.10.1002/(ISSN)1097-4636
  • Okano T, Uruno M, Sugiyama N, et al. Suppression of platelet activity on microdomain surfaces of 2-hydroxyethyl methacrylate-polyether block copolymers. J Biomed Mater Res. 1986;20:1035–1047.10.1002/(ISSN)1097-4636
  • Nakashima T, Takakura K. Thromboresistance of graft-type copolymers with hydrophilic-hydrophobic microphase-separated structure. J Biomed Mater Res. 1977;11:787–798.10.1002/(ISSN)1097-4636
  • Kataoka K, Ito H, Amano H, et al. Minimized platelet interaction with poly(2-hydroxyethyl methacrylate-block -4-bis(trimethylsilyl)methylstyrene) hydrogel showing anomalously high free water content. J Biomater Sci Polym Ed. 1998;9:111–129.10.1163/156856298X00460
  • Vermette P, Meagher L. Interaction of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanism. Colloids Surf B. 2003;28:153–198.10.1016/S0927-7765(02)00160-1
  • Ishihara K, Aragaki R, Ueda T, et al. Reduced thrombogenecity of polymers having phospholipid polar groups. J Biomed Mater Res. 1990;24:1069–1077.10.1002/(ISSN)1097-4636
  • Heath DE, Cooper SL. Section 1.2.A, Polyurethanes. In: Ratner BD, Hoffman AS, Schoen FJ, et al., editors. Biomaterials science. 3rd ed. London: Academic Press; 2013. p. 79–82.10.1016/B978-0-08-087780-8.00009-7
  • Chang CH, Tsao CT, Chang KY, et al. Effects of types and length of soft-segments on the physical properties and blood compatibility of polyurethanes. Bio-Med Mater Eng. 2012;22:373–382.
  • Silver JH, Marchant JW, Cooper SL. Effect of polyol type on the physical properties and thrombogenecity of sulfonate-coating polyurethanes. J Biomed Mater Res. 1993;27:1443–1457.10.1002/(ISSN)1097-4636
  • Yui N, Sanui K, Ogata N, et al. Y, Sakurai. Effect of microstructure of poly(propylene-oxide)-segmented polyamides on platelet adhesion. J Biomed Mater Res. 1986;20:929–943.10.1002/(ISSN)1097-4636
  • Yui N, Kataoka K, Sakurai Y, et al. ESCA study of new antithrombogenic materials: Surface composition of poly(propylene oxide)-segmented nylon 610 and its blood compatibility. Makromole Chem. 1986;187:943–953.10.1002/macp.1986.021870423
  • Yi Z, Zhu L, Xu Y, et al. Polypropylene glycol: the hydrophilic phenomena in the modification of polyetheresulfone membrane. Ind Eng Chem Res. 2011;50:11297–11305.10.1021/ie201238c
  • Mochizuki A, Senshu K, Seita Y, et al. Polyether-segmented nylon hemodialysis membrane. VI. Effect of polyether segment on morphology and surface structure of membrane. J Appl Polym Sci. 1998;69: 1645–1659.10.1002/(ISSN)1097-4628
  • McPherson T, Kidane A, Szleifer I, et al. Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir. 1998;14:176–186.10.1021/la9706781
  • Rhodes A, Sandhu SS, Onis SJ. Surface modification of biomaterials by covalent binding of poly(ethylene glycol) (PEG). In: Williams R, editor. Surface modification of biomaterials-methods analysis and applications. Cambridge: Woodhead Publishing; 2011. p. 39–55.
  • Tanaka M, Mochizuki A, Ishii N, et al. Study of blood compatibility with poly(2-methoxyethyl acrylate). Relationship between water structure and platelet compatibility in poly(2-methoxyethyl acrylate-co-2-hydroxyethyl methacrylate). Biomacromol. 2002;3:36–41.10.1021/bm010072y
  • Tanaka M, Mochizuki A. Effect of water structure on blood compatibility – thermal analysis of water in poly(meth)acrylate. J Biomed Mater Res. 2004;68A:684–695.10.1002/(ISSN)1097-4636
  • Tanaka M, Mochizuki A. Clarification of blood compatibility mechanism by controlling water structure at the blood–poly(meth)acrylate Interface. J Biomater Sci Polym Ed. 2010;21:1849–1863.10.1163/092050610X517220
  • Miwa Y, Ishida H, Saito H, et al. Network structures and dynamics of dry and swollen poly(acrylate)s. Characterization of high- and low-frequency motions as revealed by suppressed or recovered intensities (SRI) analysis of 13C NMR. Polymer. 2009;50:6091–6099.10.1016/j.polymer.2009.10.037
  • Miwa Y, Ishida H, Tanaka M, et al. Mochizuki, 2H-NMR and 13C-NMR study of hydration behavior of poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) in relation to their blood compatibility as biomaterials. J Biomater Sci Polym Ed. 2010;21:1911–1924.10.1163/092050610X489682
  • Morita S, Tanaka M, Ozaki Y. Time-resolved in situ ATR-IR observations of the process of sorption of water into a poly(2-methoxyethyl acrylate) film. Langmuir. 2007;23:3750–3761.10.1021/la0625998
  • Weaver JVM, Bannister I, Robinson KL, et al. Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate. Macromolecules. 2004;37:2395–2403.10.1021/ma0356358
  • Mochizuki A, Namiki T, Nishimori Y, et al. Study of the water structure in poly(methyl methacrylate -block- 2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface. J Biomater Sci Polym Ed. 2015;26:750–765.10.1080/09205063.2015.1056457
  • Shattil SJ, Hoxie JA, Cunningham M, et al. Changes in the platelet membrane glycoprotein IIb/IIIa complex during platelet activation. J Biolo Chem. 1985;260:11107–11114.
  • Sato K, Kobayashi S, Kusakari M, et al. The relationship between water structure and blood compatibility in poly(2-methoxyethyl acrylate) (PMEA) analogues. Macromol Biosci. 2015;15:1296–1303.10.1002/mabi.201500078
  • Garbassi F, Morra M, Occhiello E. Polymer surfaces: from physics to technology (revised and updated edition) 4.3.2 kinetic hysterisys. In: Chapter 4 Surface energetics and contact angle. Chichester Wiley; 1998. p. 186–190.
  • Garbassi F, Morra M, Occhiello E. Polymer surfaces: from physics to technology, revised and updated edition. In: 8.2 Block copolymer surfaces. Chichester: Wiley; 1998. p. 300–311.
  • Carignano MA, Szleifer I. Surface segregation in diblock copolymers and polymer blend thin films. Europhys Lett. 1995;30:525–530.10.1209/0295-5075/30/9/004
  • Fukuhara K, Nagano S, Hara M, et al. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nature Com. 2014;5. DOI:10.1038/ncomms4320
  • Johari GP, Hallbrucker A, Mayer E. Calorimetric relaxation and glass transition in poly(propylene glycols) and its monomer. J Polym Sci B Polym Phys. 1988;26:1923–1930.10.1002/polb.1988.090260909
  • Andrews RJ, Grulke EA. Glass transition temperature of polymers. In: Brandrup J, Immergut EH, Grulke EA. Polymer handbook. 4th ed. Print book. English. 2004. p. Vi 193–244.
  • Hearn MJ, Ratner BD, Briggs D. SIMS and XPS studies of polyurethane surfaces. 1. Preliminary studies. Macromolecules. 1988;21: 2950–2959.10.1021/ma00188a011
  • Allı A, Hazer B, Mencelğlu Y, et al. Synthesis, characterization and surface properties of amphiphilic polystyrene-b-polypropylene glycol block copolymers. Eur Polymer J. 2006;42:740–750.10.1016/j.eurpolymj.2005.09.032
  • Horbett TH. Chapter II.1.2 adsobed proteins on biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, et al., editors. Biomaterials science. 3rd ed. London: Academic Press; 2013. p. 394–408.10.1016/B978-0-08-087780-8.00036-X
  • Kottke-Marchant K, Anderson JM, Umemura Y, et al. Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials. 1989;10:147–155.10.1016/0142-9612(89)90017-3
  • Sivaraman B, Latour RA. Time-dependent conformational changes in adsorbed albumin and its effect on platelet adhesion. Langmuir. 2012;28:2745–2752.10.1021/la204777x
  • Chiumiento A, Lamponi S, Barbucci R. Role of fibrinogen conformation in platelet activation. Biomacromol. 2007;8:523–531.10.1021/bm060664m
  • Xu L-C, Bauer JW, Siedlecki CA. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf B. 2014;124:49–68.10.1016/j.colsurfb.2014.09.040
  • Tsai W-B, Grunkemeier JM, Horbett TA. Variations in the ability of adsorbed fibrinogen to mediate platelet adhesion to polystyrene-based materials: a multivariate statistical analysis of antibody binding to the platelet binding sites of fibrinogen. J Biomed Mater Res. 2003;67A:1255–1268.10.1002/(ISSN)1097-4636

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.