411
Views
18
CrossRef citations to date
0
Altmetric
Articles

Small diameter vascular graft with fibroblast cells and electrospun poly (L-lactide-co-ε-caprolactone) scaffolds: Cell Matrix Engineering

, , &
Pages 942-959 | Received 23 Mar 2017, Accepted 09 Aug 2017, Published online: 23 Aug 2017

References

  • Kim SH, Kim SH, Kim YH, et al. Tissue engineering for blood vessel. Tissue. 2006;3:13–20.
  • Jeong SI, Kim BS, Kang SW, et al. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-ε-caprolactone) scaffolds. Biomaterials. 2004;25(28):5939–5944.10.1016/j.biomaterials.2004.01.057
  • Jeong SI, Kim BS, Lee YM, et al. Morphology of elastic poly(L -lactide-co-ε-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules. 2004;5(4):1303–1309.10.1021/bm049921i
  • Lakshmi SN, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–798.
  • Bolli P, Chaudhry HW. Molecular physiology of cardiac regeneration. Ann NY Acad Sci. 2010;1211:113–126.10.1111/j.1749-6632.2010.05814.x
  • Lovett M, Eng G, Kluge JA, et al. Tubular silk scaffolds for small diameter vascular grafts. Organogenesis. 2010;6:217–224.10.4161/org.6.4.13407
  • Zheng Q, Liu S, Song Z, et al. Mechanism of arterial remodeling in chronic allograft vasculopathy. Front Med. 2011;5:248–253.10.1007/s11684-011-0149-3
  • Inoguchi H, Kwon IK, Inoue E, et al. Mechanical responses of a compliant electrospun poly(L-lactide-co-ε-caprolactone) small-diameter vascular graft. Biomaterials. 2006;27:1470–1478.10.1016/j.biomaterials.2005.08.029
  • Jin J, Jeong SI, Shin YM, et al. Transplantation of mesenchymal stem cells within a poly(lactide- co -ɛ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail. 2009;11:147–153.10.1093/eurjhf/hfn017
  • Park IS, Kim SH, Kim YH, et al. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts. J Biomater Sci Polym Ed. 2009;20:1645–1660.10.1163/156856208X386237
  • Lee J, Tae G, Kim YH, et al. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ɛ-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials. 2008;29:1872–1879.10.1016/j.biomaterials.2007.12.029
  • Park IS, Kim YH, Jung Y, et al. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts. J Biomater Sci Polym Ed. 2012;24:1807–1820.
  • Vaz CM, Van TS, Bouten CV, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–582.10.1016/j.actbio.2005.06.006
  • Xu C, Inai R, Kotaki M, et al. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–1168.10.1089/ten.2004.10.1160
  • Lee SJ, Yoo JJ, Lim GJ, et al. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res Part A. 2007;83A:999–1008.10.1002/(ISSN)1552-4965
  • Zhang J, Qi H, Hu P, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Artif Organs. 2006;30:898–905.10.1111/aor.2006.30.issue-12
  • Jeong SI, Kim SY, Cho SK, et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115–1122.10.1016/j.biomaterials.2006.10.025
  • Stankus JJ, Soletti L, Fujimoto K, et al. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials. 2007;28:2738–2746.10.1016/j.biomaterials.2007.02.012
  • Telemeco TA, Ayres C, Bowlin GL, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 2005;1(4):377–385.10.1016/j.actbio.2005.04.006
  • Spilker MH, Asano K, Yannas IV, et al. Contraction of collagen-glycosaminoglycan matrices by peripheral nerve cells in vitro. Biomaterials. 2001;22:1085–1093.10.1016/S0142-9612(00)00345-8
  • Mernad C, Mitchell S, Spector M, et al. Contractile behavior of smooth muscle actin containing osteoblasts in collagen-GAG matrices in vitro: implant-related cell contractions. Biomaterials. 2000;21:1867–1877.
  • Lee SB, Kim YH, Chong MS, et al. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26:1961–1968.10.1016/j.biomaterials.2004.06.032
  • Simonet M, Schneider OD, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci. 2007;47:2020–2026.10.1002/(ISSN)1548-2634
  • Kidoaki S, Kwon IK, Matsuda T, et al. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46.10.1016/j.biomaterials.2004.01.063
  • Holzmelster A, Rudisile M, Greiner A, et al. Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning. Eur Polymer J. 2007;43:4859–4867.10.1016/j.eurpolymj.2007.09.014
  • Krieg T, Abraham D, Lafyatis R, et al. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther. 2007;9(Suppl 2):1–7.
  • Liu H, Chen B, Lilly B, et al. Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis. 2008;11:223–234.10.1007/s10456-008-9102-8
  • Iyer VR, Eisen MB, Ross DT, et al. The transcriptional program in the response of human fibroblasts to serum. Science. 1999;283:83–87.10.1126/science.283.5398.83
  • Rabinovitch A, Russell T, Mintz DH, et al. Factors from fibroblasts promote pancreatic islet B cell survival in tissue culture. Diabetes. 1979;28:1108–1113.10.2337/diab.28.12.1108
  • Kobayashi K, Imanishi Y, Miyauchi A, et al. Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol. 2006;154:93–99.10.1530/eje.1.02053
  • L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12:361–365.10.1038/nm1364
  • Jeong SI, Kim SH, Kim YH, et al. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed. 2004;15:645–660.10.1163/156856204323046906
  • Xie J, Ihara M, Jung Y, et al. Mechano-active scaffold design based on microporous poly(L-lactide-co- ε -caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng. 2006;12:449–458.10.1089/ten.2006.12.449
  • Wu H, Fan J, Chu CC, et al. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci: Mater Med. 2010;21:3207–3215.10.1007/s10856-010-4164-8
  • Kumbar SG, James R, Nukavarapu SP, et al. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008;3:1–15.10.1088/1748-6041/3/3/034002
  • Kim G, Kim W. Highly porous 3D nanofiber scaffold using an electrospinning technique. J Biomed Mater Res Part B. 2007;81:104–110.10.1002/(ISSN)1552-4981
  • Kurpinski KT, Stephenson JT, Janairo RR, et al. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials. 2010;31:3536–3542.10.1016/j.biomaterials.2010.01.062
  • Nisbet DR, Forsythe JS, Shen W, et al. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl. 2009;24:7–29.10.1177/0885328208099086
  • Fujikura K, Obata A, Kasuga T, et al. Cellular migration to electrospun poly (lactic acid) fibermats. J. Biomater Sci Polym Ed. 2011;23:1939–1950.
  • Chung S, Ingle NP, Montero GA, et al. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 2010;6:1958–1967.10.1016/j.actbio.2009.12.007
  • Hassan K, Kim SH, Park I, et al. Small diameter double layer tubular scaffolds using highly elastic PLCL copolymer for vascular tissue engineering. Macromol Res. 2011;19:122–129.10.1007/s13233-011-0208-2
  • Kakkos SK, Topalidis D, Haddad R, et al. Long-term complication and patency rates of Vectra and IMPRA Carboflo vascular access grafts with aggressive monitoring, surveillance and endovascular management. Vascular. 2011;19:21–28.10.1258/vasc.2010.oa0259
  • Anwar A, Feghali GA, Jonhson KB, et al. Graft Technologies, Inc., System and method for providing a graft in a vascular environment. US Patent US 7,722,665. 2006 Jul 7.
  • Wang C, Cen L, Yin S, et al. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials. 2010;31:621–630.10.1016/j.biomaterials.2009.09.086
  • Wang Y, Lam J, Zhang B, et al. Biomechanical characterization of a micro/macroporous polycaprolactone tissue integrating vascular graft. Cardiovasc Eng Technol. 2010;1:202–215.10.1007/s13239-010-0019-1
  • Rosano C, Longstreth WT Jr, Boudreau R, et al. High blood pressure accelerates gait slowing in well-functioning older adults over 18-years of follow-up. J Am Geriatr Soc. 2011;59:390–397.10.1111/jgs.2011.59.issue-3
  • Enomoto S, Sumi M, Kajimoto K, et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155–164.10.1016/j.jvs.2009.09.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.