281
Views
14
CrossRef citations to date
0
Altmetric
Articles

Folate-conjugated amphiphilic block copolymer micelle for targeted and redox-responsive delivery of doxorubicin

, , , &
Pages 92-106 | Received 11 Sep 2017, Accepted 31 Oct 2017, Published online: 08 Nov 2017

References

  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61:2549–2559.10.1007/s00018-004-4153-5
  • Kim J, Lee JE, Lee SH, et al. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater. 2008;20(3):478–483.10.1002/(ISSN)1521-4095
  • Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338–5431.10.1021/acs.chemrev.5b00589
  • Yang B, Dong X, Lei Q, et al. Host–guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl Mater Interfaces. 2015;7(39):22084–22094.10.1021/acsami.5b07549
  • Aryal S, Hu CMJ, Zhang LF. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano. 2010;4(1):251–258.10.1021/nn9014032
  • Kwon GS. Diblock copolymer nanoparticles for drug delivery. Crit Rev Ther Drug. 1998;15:481–512.
  • Rosler A, Vandermeulen GWM, Klo H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2001;53(1):95–108.10.1016/S0169-409X(01)00222-8
  • Kedar U, Pharma M, Phutane P, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med. 2010;6(6):714–729.10.1016/j.nano.2010.05.005
  • Park JH, Lee S, Kim JH, et al. Polymeric nanomedicine for cancer therapy. Prog Polym Sci. 2008;33(1):113–137.10.1016/j.progpolymsci.2007.09.003
  • Zhang Z, Grijpma DW, Feijen J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block- poly(trimethylene carbonate) films to micellar-like nanoparticles. J Controlled Release. 2006;112(1):57–63.10.1016/j.jconrel.2006.01.010
  • Feng J, Zhuo RX, Zhang XZ. Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci. 2012;37(2):211–236.10.1016/j.progpolymsci.2011.07.008
  • Jiang T, Li YM, Lv Y, et al. Amphiphilic polycarbonate conjugates of doxorubicin with pH-sensitive hydrazone linker for controlled release. Colloids Surf B. 2013;111(1):542–548.10.1016/j.colsurfb.2013.06.054
  • Kobayashi S, Makinl A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev. 2009;109(11):5288–5353.10.1021/cr900165z
  • Feng J, He F, Zhuo RX. Polymerization of trimethylene carbonate with high molecular weight catalyzed by immobilized lipase on silica microparticles. Macromolecules. 2002;35(19):7175–7177.10.1021/ma0255579
  • Wang CF, Lin YX, Jiang T, et al. Polyethylenimine-grafted polycarbonates as biodegradable polycations for gene delivery. Biomaterials. 2009;30(27):4824–4832.10.1016/j.biomaterials.2009.05.053
  • He F, Wang CF, Jiang T, et al. Poly[(5-methyl-5-allyloxycarbonyl-trimethylenecarbonate)-co-(5,5-dimethyl-trimethylene carbonate)] with grafted polyethylenimine as biodegradable polycations for efficient gene delivery. Biomacromolecules. 2010;11(11):3028–3035.10.1021/bm1008525
  • Pan J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials. 2008;29(17):2663–2672.10.1016/j.biomaterials.2008.02.020
  • Kanamala M, Wilson WR, Yang M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials. 2016;85:152–167.10.1016/j.biomaterials.2016.01.061
  • Xiong J, Meng FH, Wang C, et al. Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. J Mater Chem. 2011;21:5786–5794.10.1039/c0jm04410e
  • Prabaharan M, Grailer JJ, Pilla S, et al. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials. 2009;30(30):6065–6075.10.1016/j.biomaterials.2009.07.048
  • Meng FH, Hennink WE, Zhong ZY. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30(12):2180–2198.10.1016/j.biomaterials.2009.01.026
  • Lv Y, Yang B, Jiang T, et al. Folate-conjugated amphiphilic block copolymers for targeted and efficient delivery of doxorubicin. Colloids Surf B. 2014;115:253–259.10.1016/j.colsurfb.2013.11.049
  • He F, Wang YX, Feng J, et al. Synthesis of poly[(5-benzyloxy-trimethylene carbonate)-co-(5,5-dimethyl-trimethylene carbonate)] catalyzed by immobilized lipase on silica particles with different size. Polymer. 2003;44:3215–3219.10.1016/S0032-3861(03)00227-1
  • Mullen BD, Tang CN, Storey RF. New aliphatic poly (ester-carbonates) based on 5-methyl-5-allyloxycarbonyl-1, 3-dioxan-2-one. J Polym Sci Part A: Polym Chem. 2003;41(13):1978–1991.10.1002/(ISSN)1099-0518
  • Matsuo J, Aoki K, Snada F, et al. Substituent effect on the anionic equilibrium polymerization of six-membered cyclic carbonates. Macromolecules. 1998;31:4432–4438.10.1021/ma971227q
  • Huang SJ, Sun S, Feng TH, et al. Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. Eur J Pharm Sci. 2009;38(1):64–73.10.1016/j.ejps.2009.06.002
  • Riess G. Micellization of block copolymers. Prog Polym Sci. 2003;28:1107–1170.10.1016/S0079-6700(03)00015-7
  • Wang SJ, Luo YF, Zeng SY, et al. Dodecanol-poly(D, L-lactic acid)-b-poly (ethylene glycol)-folate(Dol-PLA-PEG-FA) nanoparticles: evaluation of cell cytotoxicity and selecting capability in vitro. Colloids Surf B. 2013;102:130–135.10.1016/j.colsurfb.2012.07.030
  • Kumaresh SS, Tan DCW, Yang YY. pH-Triggered thermally responsive polymer core-shell nanoparticles for drag delivery. Adv Mater. 2005;17:318–323.
  • Saxena V, Naguib Y, Hussain MD. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf B. 2012;94:274–280.10.1016/j.colsurfb.2012.02.001
  • Lu YJ, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2012;64:342–352.10.1016/j.addr.2012.09.020
  • Wu YL, Chen W, Meng FH, et al. Core-crosslinked pH-sensitive degradable micelles: a promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J Controlled Release. 2012;164(3):338–345.10.1016/j.jconrel.2012.07.011
  • Sun HL, Guo B, Cheng R, et al. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials. 2009;30:6358–6366.10.1016/j.biomaterials.2009.07.051
  • Wu LL, Zou Y, Deng C, et al. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials. 2013;34:5262–5272.10.1016/j.biomaterials.2013.03.035
  • Yu JM, Xie X, Wu JZ, et al. Folic acid conjugated glycol chitosan micelles for targeted delivery of doxorubicin: preparation and preliminary evaluation in vitro. J Biomater Sci Polym Ed. 2013;24(5):606–620.10.1080/09205063.2012.701548
  • Du WJ, Xu ZQ, Nyström AM, et al. 19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. Bioconjug Chem. 2008;19(12):2492–2498.10.1021/bc800396 h
  • Zhang L, Hu CH, Cheng SX, et al. Hyperbranched amphiphilic polymer with folate mediated targeting property. Colloid Surf B. 2010;79(2):427–433.
  • Guo X, Shi CL, Wang J, et al. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials. 2013;34:4544–4554.10.1016/j.biomaterials.2013.02.071
  • Yang XQ, Grailer JJ, Pilla S, et al. Tumor-targeting, pH-responsive and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjug Chem. 2010;21(3):496–504.10.1021/bc900422j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.