623
Views
22
CrossRef citations to date
0
Altmetric
Articles

Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase

, , , , &
Pages 107-124 | Received 24 Jul 2017, Accepted 07 Nov 2017, Published online: 20 Nov 2017

References

  • Ng J, Spiller K, Bernhard J, et al. Biomimetic approaches for bone tissue engineering. Tissue Eng Part B Rev. 2017;23(5):480–493. doi:10.1089/ten.TEB.2016.0289. PubMed PMID: 27912680; PubMed Central PMCID: PMC5653138.
  • Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med. 2017;14(1):1–14.10.1007/s13770-016-0001-6
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543.10.1016/S0142-9612(00)00121-6
  • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431. doi:10.1016/j.biomaterials.2006.01.039. PubMed PMID: 16504284.
  • Islam MS, Todo M. Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett. 2016;173:231–234. doi:10.1016/j.matlet.2016.03.028.
  • Quinlan E, López-Noriega A, Thompson E, et al. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release. 2015;198:71–79. doi:10.1016/j.jconrel.2014.11.021. PubMed PMID: 25481441.
  • Villa MM, Wang L, Huang J, et al. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res Part B Appl Biomater. 2015;103(2):243–253. doi:10.1002/jbm.b.33225. PubMed PMID: 24909953; PubMed Central PMCID: PMC4380129.
  • Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J Cryst Growth. 2004;270(1–2):197–202.10.1016/j.jcrysgro.2004.06.007
  • Hu Q. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials. 2004;25(5):779–785. doi:10.1016/s0142-9612(03)00582-9.
  • Chang C, Peng N, He M, et al. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym. 2013;91(1):7–13. doi:10.1016/j.carbpol.2012.07.070. PubMed PMID: 23044099.
  • Mucalo M, Yokogawa Y, Toriyama M, et al. Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med. 1995;6(10):597–605.
  • Wang L, Nemoto R, Senna M. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite. J Mater Sci Mater Med. 2004;15(3):261–265.
  • Chang MC, Ko C-C, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003;24(17):2853–2862. doi:10.1016/s0142-9612(03)00115-7.
  • Grande CJ, Torres FG, Gomez CM, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 2009;5(5):1605–1615. doi:10.1016/j.actbio.2009.01.022. PubMed PMID: 19246264.
  • Jiang H, Zuo Y, Zou Q, et al. Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration. ACS Appl Mater Interfaces. 2013;5(22):12036–12044. doi:10.1021/am4038432. PubMed PMID: 24191736.
  • Camci-Unal G, Laromaine A, Hong E, et al. Biomineralization guided by paper templates. Sci Rep. 2016;6:27693. doi:10.1038/srep27693. PubMed PMID: 27277575; PubMed Central PMCID: PMC4899756.
  • Huang Y, Zhu C, Yang J, et al. Recent advances in bacterial cellulose. Cellulose. 2013;21(1):1–30. doi:10.1007/s10570-013-0088-z.
  • Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym. 2013;92(2):1432–1442. doi:10.1016/j.carbpol.2012.10.071. PubMed PMID: 23399174.
  • Barud HS, Souza JL, Santos DB, et al. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym. 2011;83(3):1279–1284. doi:10.1016/j.carbpol.2010.09.049.
  • Gao Q, Shen X, Lu X. Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym. 2011;83(3):1253–1256. doi:10.1016/j.carbpol.2010.09.029.
  • Wan Y, Hong L, Jia S, et al. Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol. 2006;66(11–12):1825–1832. doi:10.1016/j.compscitech.2005.11.027.
  • Saska S, Barud HS, Gaspar AM, et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater. 2011;2011:175362. doi:10.1155/2011/175362. PubMed PMID: 21961004; PubMed Central PMCID: PMC3180784.
  • Ran J, Jiang P, Liu S, et al. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater Sci Eng C. 2017;78:130–140. doi:10.1016/j.msec.2017.04.062. PubMed PMID: 28575967.
  • Hu JX, Ran JB, Chen S, et al. Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair. Biomacromolecules. 2016;17(7):2437–2447.10.1021/acs.biomac.6b00587
  • Oliveira Barud HG, Barud Hda S, Cavicchioli M, et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015;128:41–51. doi:10.1016/j.carbpol.2015.04.007. PubMed PMID: 26005138.
  • Lee J, Kim J, Lee O, et al. The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139(6):629–635. doi:10.1001/jamaoto.2013.3044.
  • Chen J, Zhuang A, Shao H, et al. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B. 2017;5(20):3640–3650. doi:10.1039/C7TB00485K.
  • Hofmann S, Hagenmuller H, Koch AM, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials. 2007;28(6):1152–1162. doi:10.1016/j.biomaterials.2006.10.019. PubMed PMID: 17092555.
  • Fan H, Liu H, Wong EJ, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29(23):3324–3337. doi:10.1016/j.biomaterials.2008.04.012. PubMed PMID: 18462787.
  • Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26(34):7082–7094. doi:10.1016/j.biomaterials.2005.05.022. PubMed PMID: 15985292.
  • Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, et al. Gel spinning of silk tubes for tissue engineering. Biomaterials. 2008;29(35):4650–4657. doi:10.1016/j.biomaterials.2008.08.025. PubMed PMID: 18801570; PubMed Central PMCID: PMC3206260.
  • He J-X, Tan W-L, Han Q-M, et al. Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci. 2016;51(9):4399–4410.10.1007/s10853-016-9752-7
  • Shao W, He J, Han Q, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C. 2016;67:599–610. doi:10.1016/j.msec.2016.05.081. PubMed PMID: 27287159.
  • Cai X, Chen L, Jiang T, et al. Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem. 2011;21(32):12015. doi:10.1039/c1jm11503k.
  • Liu Y, Wu Z, Zhao Y. Liquid–liquid equilibrium correlation of aqueous two-phase systems composed of polyethylene glycol and nonionic surfactant. Thermochim Acta. 2015;602:78–86. doi:10.1016/j.tca.2015.01.013.
  • Woodard JR, Hilldore AJ, Lan SK, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28(1):45–54. doi:10.1016/j.biomaterials.2006.08.021. PubMed PMID: 16963118.
  • Kim YH, Park JH, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103(1):209–219. doi:10.1016/j.jconrel.2004.11.008. PubMed PMID: 15710512.
  • Hosakun Y, Halász K, Horváth M, et al. ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes. Chem Eng J. 2017;324:83–92. doi:10.1016/j.cej.2017.05.029.
  • Zhou C, Shi Q, Guo W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces. 2013;5(9):3847–3854. doi:10.1021/am4005072. PubMed PMID: 23590943.
  • Li S, Ihli J, Marchant WJ, et al. Synchrotron FTIR mapping of mineralization in a microfluidic device. Lab Chip. 2017;17(9):1616–1624. doi:10.1039/c6lc01393g. PubMed PMID: 28387775.
  • Sato K, Kogure T, Kumagai Y, et al. Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interface Sci. 2001;240(1):133–138.10.1006/jcis.2001.7617
  • Zhang W, Liao S, Cui F. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003;15(16):3221–3226.10.1021/cm030080 g
  • Possenti E, Colombo C, Bersani D, et al. New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: a multi-analytical approach. Microchem J. 2016;127:79–86.10.1016/j.microc.2016.02.008
  • Igeta K, Kuwamura Y, Horiuchi N, et al. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite. J Biomed Mater Res Part A. 2017;105(4):1063–1070. doi:10.1002/jbm.a.35997. PubMed PMID: 28085214.
  • Jing W, Chunxi Y, Yizao W, et al. Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater. 2013;11(2):173–180. doi:10.1080/1539445x.2011.611204.
  • Fernandes SCM, Oliveira L, Freire CSR, et al. Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 2009;11(12):2023. doi:10.1039/b919112g.
  • Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–2785.10.1016/j.biomaterials.2004.07.044
  • Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–1169.10.1002/adma.201403354
  • Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules. 2006;7(1):208–214.10.1021/bm0505888
  • Zheng Z, Wei Y, Yan S, et al. Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment. J Appl Polym Sci. 2010;116(1):461–467. doi:10.1002/app.31522.
  • Lee JM, Kim JH, Lee OJ, et al. The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139(6):629–635.10.1001/jamaoto.2013.3044
  • Wu S, Liu X, Yeung KWK, et al. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36. doi:10.1016/j.mser.2014.04.001.
  • Mohd Amin MCI, Ahmad N, Halib N, et al. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym. 2012;88(2):465–473. doi:10.1016/j.carbpol.2011.12.022.
  • Zhang F, Zuo BQ, Zhang HX, et al. Studies of electrospun regenerated SF/TSF nanofibers. Polymer. 2009;50(1):279–285. doi:10.1016/j.polymer.2008.10.053.
  • Numata K, Sato R, Yazawa K, et al. Crystal structure and physical properties of Antheraea yamamai silk fibers: long poly(alanine) sequences are partially in the crystalline region. Polymer. 2015;77:87–94. doi:10.1016/j.polymer.2015.09.025.
  • Barud H, Ribeiro C, Crespi M, et al. Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim. 2007;87(3):815–818.10.1007/s10973-006-8170-5
  • George J, Ramana KV, Sabapathy SN, et al. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol. 2005;37(4):189–194.10.1016/j.ijbiomac.2005.10.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.