236
Views
8
CrossRef citations to date
0
Altmetric
Articles

The growth and pluripotency of mesenchymal stem cell on the biodegradable polyurethane synthesized with ferric catalyst

, , , , , & show all
Pages 1095-1108 | Received 21 Sep 2017, Accepted 09 Jan 2018, Published online: 25 Feb 2018

References

  • Santerre JP, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 2005;26(35):7457–70. doi:10.1016/j.biomaterials.2005.05.079.
  • Bonzani IC, Adhikari R, Houshyar S, et al. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials. 2007;28(3):423–433. doi:10.1016/j.biomaterials.2006.08.026.
  • Lei YN, Zhu YB, Gong CF, et al. Synthesis, characterization and cytocompatibility of a degradable polymer using ferric catalyst for esophageal tissue engineering. J Mater Sci -Mater Med. 2014;25(2):273–282. doi:10.1007/s10856-013-5068-1.
  • Shen Z, Wang J, Lu D, et al. Synthesis and properties of flexible polyurethane using ferric catalyst for hypopharyngeal tissue engineering. Biomed Res Int. 2015;2015:798721. doi:10.1155/2015/798721.
  • Gong C, Hou L, Zhu Y, et al. In vitro constitution of esophageal muscle tissue with endocyclic and exolongitudinal patterns. ACS Appl Mater Interfaces.. 2013;5(14):6549–6555. doi:10.1021/am401115z.
  • Shen Z, Guo S, Ye D, et al. Skeletal muscle regeneration on protein-grafted and microchannel-patterned scaffold for hypopharyngeal tissue engineering. Biomed Res Int. 2013;2013:146953. doi:10.1155/2013/146953.
  • Lv J, Chen L, Zhu Y, et al. Promoting epithelium regeneration for esophageal tissue engineering through basement membrane reconstitution. ACS Appl Mater Interfaces. 2014;6(7):4954–4964. doi:10.1021/am4059809.
  • Shen Z, Kang C, Chen J, et al. Surface modification of polyurethane towards promoting the ex vivo cytocompatibility and in vivo biocompatibility for hypopharyngeal tissue engineering. J Biomater Appl. 2013;28(4):607–616. doi:10.1177/0885328212468184.
  • Wang M, Favi P, Cheng X, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 2016;46:256–265.doi:10.1016/j.actbio.2016.09.030.
  • Huang S, Liang N, Hu Y, et al. Polydopamine-assisted surface modification for bone biosubstitutes. Biomed Res Int. 2016;2016:2389895. doi:10.1155/2016/2389895.
  • Duque Sánchez L, Brack N, Postma A, et al. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials. 2016;106:24–45. doi:10.1016/j.biomaterials.2016.08.011.
  • Li ZK, Wu ZS, Lu T, et al. Materials and surface modification for tissue engineered vascular scaffolds. J Biomater Sci Polymer Ed. 2016;27(15):1534–1552. doi:10.1080/09205063.2016.1217607.
  • Zhu Y, Gao C, Liu X, et al. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromol. 2002;3(6):1312–1319.10.1021/bm020074y
  • Shen Z, Chen J, Kang C, et al. Engineered hypopharynx from coculture of epithelial cells and fibroblasts using poly(ester urethane) as substratum. Biomed Res Int. 2013;2013:138504. doi:10.1155/2013/138504.
  • Zhu Y, Gao C, He T, et al. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials. 2004;25(3):423–430.10.1016/S0142-9612(03)00549-0
  • Zhu Y, Gao C, Liu X, et al. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 2004;10(1–2):53–61. doi:10.1089/107632704322791691.
  • Zhu Y, Chian KS, Chan-Park MB, et al. Protein bonding on biodegradable poly(l-lactide-co-caprolactone) membrane for esophageal tissue engineering. Biomaterials. 2006;27(1):68–78. doi:10.1016/j.biomaterials.2005.05.069.
  • Nalluri SM, Krishnan GR, Cheah C, et al. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells. Mater Sci Eng: C. 2015;54:182–195. doi:10.1016/j.msec.2015.05.043.
  • Tancos Z, Bock I, Nemes C, et al. Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes. Gene. 2015;566(2):148–157. doi:10.1016/j.gene.2015.04.034.
  • Katsiani E, Garas A, Skentou C, et al. Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing. Cell Tissue Banking. 2016;17(3):517–529. doi:10.1007/s10561-016-9559-4.
  • Dev K, Giri SK, Kumar A, et al. Expression of transcriptional factor genes (Oct-4, Nanog, and Sox-2) and embryonic stem Cell-Like characters in placental membrane of buffalo (Bubalus bubalis). The Journal of Membrane Biology. 2012;245(4):177–183. doi:10.1007/s00232-012-9427-5.
  • Stine ZE, Walton ZE, Altman BJ, et al. MYC, Metabolism, and Cancer. Cancer Discov.. 2015;5(10):1024–1039. doi:10.1158/2159-8290.CD-15-0507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.