817
Views
16
CrossRef citations to date
0
Altmetric
Articles

Highly stretchable HA/SA hydrogels for tissue engineering

, , , , , & show all
Pages 543-561 | Received 04 Oct 2017, Accepted 09 Jan 2018, Published online: 16 Jan 2018

References

  • Nair S, Remya NS, Remya S, et al. A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications. Carbohyd Polym. 2011;85:838–844.10.1016/j.carbpol.2011.04.004
  • Ullah F, Othman MB, Javed F, et al. Classification, processing and application of hydrogels: a review. Mat Sci Eng C. 2015;57:414–433.10.1016/j.msec.2015.07.053
  • Yang C, Wang X, Yao X, et al. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Controlled Release. 2015;205:206–217.10.1016/j.jconrel.2015.02.008
  • Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003;49:2990–3006.10.1002/(ISSN)1547-5905
  • Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions form biodegradable gels in situ. Biomaterials. 2000;21:2155–2161.10.1016/S0142-9612(00)00116-2
  • Kim MS, Kim SK, Kim SH, et al. In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG–PCL diblock copolymer gels. Tissue Eng.. 2006;12:2863–2873.10.1089/ten.2006.12.2863
  • Vinatier C, Mrugala D, Jorgensen C, et al. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol.. 2009;27:307–314.10.1016/j.tibtech.2009.02.005
  • Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury. 2008;39:77–87.10.1016/j.injury.2008.01.036
  • Zhou Z, Chen J, Peng C, et al. Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. J Macromol Sci Part A. 2014;51:318–325.10.1080/10601325.2014.882693
  • Li L, Wang N, Jin X, et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials. 2014;35:3903–3917.10.1016/j.biomaterials.2014.01.050
  • Xu X, Jha AK, Harrington DA, et al. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–3294.10.1039/c2sm06463d
  • Zheng S, Liu Y, Palumbo FS, et al. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004;25:1339–1348.10.1016/j.biomaterials.2003.08.014
  • Bajaj G, Kim MR, Mohammed SI, et al. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Controlled Release. 2012;158:386–392.10.1016/j.jconrel.2011.12.001
  • Peppas NANA, Huang Y, Torres-Lugo M, et al. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. 2000;2:9–29.10.1146/annurev.bioeng.2.1.9
  • Huang YC, Huang KY, Yang BY, et al. Fabrication of novel hydrogel with berberine-enriched carboxymethylcellulose and hyaluronic acid as an anti-inflammatory barrier membrane. Biomed Res Int. 2016;2016:3640182.
  • Elia R, Newhide DR, Pedevillano PD, et al. Silk-hyaluronan-based composite hydrogels: a novel, securable vehicle for drug deliver. J Biomater Appl. 2013;27:749–762.10.1177/0885328211424516
  • Gřundělová L, Gregorova A, Mráček A, et al. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr Polym. 2015;119:142–148.
  • Yeom J, Bhang SH, Kim BS, et al. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem. 2010;21:240–247.10.1021/bc9002647
  • Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature. 2012;489:133–136.10.1038/nature11409
  • Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–487.10.1002/(ISSN)1521-4095
  • Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater. 2002;14:1120–1124.10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
  • Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–1158.10.1002/adma.200304907
  • Huang T, Xu H, Jiao K, et al. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater. 2007;19:1622–1626.10.1002/(ISSN)1521-4095
  • Sakai T, Akagi Y, Matsunaga T, et al. Highly elastic and deformable hydrogel formed from tetra-arm polymers. Macromol Rapid Commun. 2010;31:1954–1959.10.1002/marc.v31.22
  • Song G, Zhang L, He C, et al. Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules. 2013;46:7423–7435.10.1021/ma401053c
  • Chung CW, Kang JY, Yoon IS, et al. Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf B. 2011;88:711–716.10.1016/j.colsurfb.2011.08.005
  • Yang R, Tan L, Cen L, et al. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Adv. 2016;6:16838–16850.10.1039/C5RA27870H
  • Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590.10.1039/b924290b
  • Amin MA, Abdel-Raheem IT. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol–chitosan hydrogel containing honey bee venom in diabetic rats. Arch Pharmacal Res.. 2014;37:1016–1031.10.1007/s12272-013-0308-y
  • Chen B, Wang B, Zhang WJ, et al. In vivo tendon engineering with skeletal muscle derived cells in a mouse model. Biomaterials. 2012;33:6086–6097.10.1016/j.biomaterials.2012.05.022
  • Baniasadi M, Minary-Jolandan M. Alginate-collagen fibril composite hydrogel. Materials. 2015;8:799–814.
  • Chai F, Sun L, He X, et al. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int J Nanomed.. 2017;12:1791–1802.10.2147/IJN
  • Varkey M, Ding J, Tredget EE. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts. Biomaterials. 2014;35:9591–9598.10.1016/j.biomaterials.2014.07.048
  • Grant GT, Morris ER, Rees DR, et al. Biological interactions between polysaccharides and divalent ccations: the egg-box model. FEBS Lett. 1973;32:195–198.10.1016/0014-5793(73)80770-7
  • Ni Y, Tang Z, Cao W, et al. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials. Int J Biol Macromol. 2015;74:367–375.10.1016/j.ijbiomac.2014.10.058
  • Busby GA, Grant MH, MacKay SP, et al. Confined compression of collagen hydrogels. J Biomech. 2013;46:837–840.10.1016/j.jbiomech.2012.11.048
  • Jonathan PC, Bradley ST, Nezam H, et al. Rheology of gastric mucin exhibits a pH-dependent sol−gel transition. Biomacromolecules. 2007;8:1580–1586.
  • Liu Y, Chan-Park MB. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials. 2009;30:196–207.10.1016/j.biomaterials.2008.09.041
  • Huang CC, Ravindran S, Yin Z, et al. 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials. 2014;35:5316–5326.10.1016/j.biomaterials.2014.03.035
  • Luo C, Zhao J, Tu M, et al. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network. Mat Sci Eng C. 2014;36:301–308.10.1016/j.msec.2013.12.021
  • Zhao Y, Li F, Carvajal MT, et al. Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier. J Colloid Interface Sci. 2009;332:345–353.10.1016/j.jcis.2008.12.048
  • LeRoux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J Biomed Mater Res. 1999;47:46–53.10.1002/(SICI)1097-4636(199910)47:1<>1.0.CO;2-S
  • De Boulle K, Glogau R, Kono T, et al. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg. 2013;39:1758–1766.10.1111/dsu.12301
  • Markeson D, Pleat JM, Sharpe JR, et al. Scarring, stem cells, scaffolds and skin repair. J Tissue Eng Reg Med. 2015;9:649–668.10.1002/term.v9.6
  • Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Controlled Release. 2011;155:193–199.10.1016/j.jconrel.2011.04.007
  • Park YD, Tirelli NicolaD, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials. 2003;24:893–900.10.1016/S0142-9612(02)00420-9
  • Burdick JA, Chung C, Randolph MA, et al. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6:386–391.10.1021/bm049508a
  • Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J Royal Soc Interface. 2007;4:413–437.10.1098/rsif.2006.0179
  • Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–470.10.1038/nmat2441
  • Pelham RJ Jr, Wang YI. Cell locomotion and focal adhesions are regulated by substrate flexibility. Natl Acad Sci USA. 1997;94:3661–13665.
  • Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–1143.10.1126/science.1116995
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689.10.1016/j.cell.2006.06.044
  • Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater. 2007;6:385–392.10.1038/nmat1890
  • Li W, Guan T, Zhang X, et al. The effect of layer-by-layer assembly coating on the proliferation and differentiation of neural stem cells. ACS Appl Mater Interfaces. 2015;7:3018–3029.10.1021/am504456t
  • Du P, Zhao X, Zeng J, et al. Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Appl Surf Sci. 2015;345:90–98.10.1016/j.apsusc.2015.03.151

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.