381
Views
2
CrossRef citations to date
0
Altmetric
Articles

A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve

, , , , , , , , , , , , & show all
Pages 599-634 | Received 01 Nov 2017, Accepted 16 Jan 2018, Published online: 30 Jan 2018

References

  • Yacoub MH, Takkenberg JJ. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005;2(2):60–61.10.1038/ncpcardio0112
  • Brown JM, O’Brien SM, Wu C, et al. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the society of thoracic surgeons national database. J Thoracic Cardiovasc Surg. 2009;137:82–90.10.1016/j.jtcvs.2008.08.015
  • Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155–1172.10.1517/14712598.2015.1051527
  • Welke KF, Wu Y, Grunkemeier GL, et al. Long-term results after Carpentier-Edwards pericardial aortic valve implantation, with attention to the impact of age. Heart Surg Forum. 2011;14(3):E160–E165.10.1532/HSF98.20101140
  • Kallio M, Pihkala J, Sairanen H, et al. Long-term results of the Ross procedure in a population-based follow-up. Eur J Cardiothorac Surg. 2015;47(5):e164–e170.10.1093/ejcts/ezv004
  • Rieder E, Steinacher-Nigisch A, Weigel G. Human immune-cell response towards diverse xenogeneic and allogeneic decellularized biomaterials. Int J Surg. 2016;36(Pt A):347–351. 10.1016/j.ijsu.2016.06.042
  • Chester AH, Taylor PM. Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1437–1443.10.1098/rstb.2007.2126
  • Rodriguez ER, Tan CD. Structure and anatomy of the human pericardium. Prog Cardiovasc Dis. 2017;59(4):327–340.10.1016/j.pcad.2016.12.010
  • Lausberg HF, Aicher D, Langer F, et al. Aortic valve repair with autologous pericardial patch. Eur J Cardiothorac Surg. 2006;2:244–249.10.1016/j.ejcts.2006.04.031
  • Ozaki S, Kawase I, Yamashita H, et al. Aortic valve reconstruction using autologous pericardium for patients aged less than 60 years. J Thorac Cardiovasc Surg. 2014;148(3):934–938.
  • Imaishi Y, Lodowski KH, Koutalos Y. Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry. 2007;46(34):9674–9684.10.1021/bi701055 g
  • Campagnola PJ, Millard AC, Terasaki M, et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J. 2002;82(Pt 1):493–508.10.1016/S0006-3495(02)75414-3
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675.10.1038/nmeth.2089
  • Caetano GF, Fronza M, Leite MN, et al. Comparison of collagen content in skin wounds evaluated by biochemical assay and by computer-aided histomorphometric analysis. Pharm Biol. 2016;54(11):2555–2559.10.3109/13880209.2016.1170861
  • Fonseca C, Taatjes DJ, Callas P, et al. The effects of aging on the intimal region of the human saphenous vein: insights from multimodal microscopy and quantitative image analysis. Histochem Cell Biol. 2012;138(3):435–445.10.1007/s00418-012-0966-8
  • Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst. 2012;36(4):2621–2631.10.1007/s10916-011-9737-7
  • Frisch-Fay R. Flexible bars. Washington (DC): Butterworths; 1962.
  • Sacks, MS, Merryman, WD, Schmidt, DE On the biomechanics of heart valve function. J. Biomech. 2009;42:1804–1824.10.1016/j.jbiomech.2009.05.015
  • Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–1418.10.2353/ajpath.2007.070251
  • Taylor PM, Allen SP, Yacoub MH. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis. 2000;9(1):150–158.
  • Straka F, Schornik D, Masin J, et al. A new approach to heart valve tissue engineering based on modifying autologous human pericardium by 3D cellular mechanotransduction. J Biomater Tissue Eng. 2017;7:527–543.10.1166/jbt.2017.1598
  • Bullwinkel J, Baron-Lühr B, Lüdemann A, et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol. 2006;206(3):624–635.10.1002/(ISSN)1097-4652
  • Fleisher B, Clarke C, Ait-Oudhia S. Current advances in biomarkers for targeted therapy in triple-negative breast cancer. Breast Cancer (Dove Med Press). 2016;8:183–197.
  • Latif N, Sarathchandra P, Taylor PM, et al. Characterization of molecules mediating cell-cell communication in human cardiac valve interstitial cells. Cell Biochem Biophys. 2006;45(3):255–264.10.1385/CBB:45:3
  • Kurpinski K, Chu J, Hashi C, et al. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2006;103(44):16095–16100.10.1073/pnas.0604182103
  • Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–1880.10.1161/CIRCULATIONAHA.108.805911
  • Arjunon S, Rathan S, Jo H, et al. Aortic valve: mechanical environment and mechanobiology. Ann Biomed Eng. 2013;41(7):1331–1346.10.1007/s10439-013-0785-7
  • Rabkin-Aikawa E, Farber M, Aikawa M, et al. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13(5):841–847.
  • Carruthers CA, Alfieri CM, Joyce EM, et al. Gene expression and collagen fiber micromechanical interactions of the semilunar heart valve interstitial cell. Cell Mol Bioeng. 2012;5(3):254–265.10.1007/s12195-012-0230-2
  • Reiser K, McCormick RJ, Rucker RB. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J. 1992;6(7):2439–2449.
  • Butcher JT, Tressel S, Johnson T, et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol. 2006;26(1):69–77.10.1161/01.ATV.0000196624.70507.0d
  • Mongkoldhumrongkul N, Yacoub MH, Chester AH. Valve endothelial cells – not just any old endothelial cells. Curr Vasc Pharmacol. 2016;14(2):146–154.10.2174/1570161114666151202205504
  • Chung-Welch N, Patton WF, Yen-Patton GP, et al. Phenotypic comparison between mesothelial and microvascular endothelial cell lineages using conventional endothelial cell markers, cytoskeletal protein markers and in vitro assays of angiogenic potential. Differentiation. 1989;42(1):44–53.10.1111/j.1432-0436.1989.tb00606.x
  • Lachaud CC, Rodriguez-Campins B, Hmadcha A, et al. Use of mesothelial cells and biological matrices for tissue engineering of simple epithelium surrogates. Front Bioeng Biotechnol. 2015;3:117.
  • Li S, Henry JJ. Nonthrombogenic approaches to cardiovascular bioengineering. Annu Rev Biomed Eng. 2011;13:451–475.10.1146/annurev-bioeng-071910-124733
  • Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23(7):1185–1189.10.1161/01.ATV.0000073832.49290.B5
  • Weber B, Dijkman PE, Scherman J, et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013;34(30):7269–7280.10.1016/j.biomaterials.2013.04.059
  • Stokes DJ. Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Chichester: Wiley; 2008.10.1002/9780470758731
  • Rock CA, Han L, Doehring TC. Complex collagen fiber and membrane morphologies of the whole porcine aortic valve. PLoS One. 2014;9(1):e86087.10.1371/journal.pone.0086087
  • Mega M, Marom G, Halevi R, et al. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality. Comput Methods Biomech Biomed Engin. 2016;19(9):1002–1008.10.1080/10255842.2015.1088009
  • Taylor PM. Biological matrices and bionanotechnology. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1313–1320.10.1098/rstb.2007.2117
  • Kurland NE, Drira Z, Yadavalli VK. Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron. 2012;43(2–3):116–128.10.1016/j.micron.2011.07.017
  • Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106(1–2):1–56.10.1016/S0047-6374(98)00119-5
  • Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res. 1998;41(1):131–141.10.1002/(ISSN)1097-4636
  • Joyce EM, Liao J, Schoen FJ, et al. Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann Thorac Surg. 2009;87(4):1240–1249.10.1016/j.athoracsur.2008.12.049
  • Ku CH, Johnson PH, Batten P, et al. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res. 2006;71(3):548–556.10.1016/j.cardiores.2006.03.022
  • Provenzano P, Lakes R, Keenan T, et al. Nonlinear ligament viscoelasticity. Ann Biomed Eng. 2001;29(10):908–914.10.1114/1.1408926
  • Thornton GM, Frank CB, Shrive NG. Ligament creep behavior can be predicted from stress relaxation by incorporating fiber recruitment. J Rheol. 2001;45(2):493–507.10.1122/1.1343877
  • Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng. 2007;129:757–766.10.1115/1.2768111
  • Adler  Y, Charron  P, Imazio  M, et al. ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC) Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36 (42):2921–64.
  • Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Philos Trans R Soc Lond B Biol Sci. 2007;29;362(1484):1369–1391.10.1098/rstb.2007.2122
  • Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today. 2007;81(4):229–240.10.1002/bdrc.v81:4
  • Bax DV, Mahalingam Y, Cain S, et al. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci. 2007;120(Pt 8):1383–1392.10.1242/jcs.003954
  • Hasan A, Ragaert K, Swieszkowski W, et al. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014;47(9):1949–1963.10.1016/j.jbiomech.2013.09.023
  • Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98:25–35.
  • Tseng H, Grande-Allen KJ. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomater. 2011;7(5):2101–2108.10.1016/j.actbio.2011.01.022
  • Buchanan RM, Sacks MS. Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol. 2014;13(4):813–826.10.1007/s10237-013-0536-6
  • Prydz K, Dalen KT. Synthesis and sorting of proteoglycans. J Cell Sci. 2000;113(Pt 2):193–205.
  • Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol. 2006;294(2):292–302.10.1016/j.ydbio.2006.03.027
  • Eckert CE, Fan R, Mikulis B, et al. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 2013;9(1):4653–4660.10.1016/j.actbio.2012.09.031
  • Lee JM, Boughner DR. Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res. 1985 Sep;57(3):475–481.10.1161/01.RES.57.3.475
  • Lee MC, Fung YC, Shabetai R, et al. Biaxial mechanical properties of human pericardium and canine comparisons. Am J Physiol. 1987 Jul;253(1 Pt 2):H75–82.
  • Sacks MS, Chuong CJ, More R. Collagen fiber architecture of bovine pericardium. ASAIO J. 1994;40(3):M632–M637.10.1097/00002480-199407000-00075
  • Tremblay D, Zigras T, Cartier R, et al. A comparison of mechanical properties of materials used in aortic arch reconstruction. Ann Thorac Surg. 2009 Nov;88(5):1484–1491.10.1016/j.athoracsur.2009.07.023
  • Balguid A, Rubbens MP, Mol A, et al. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets–relevance for tissue engineering. Tissue Eng. 2007;13(7):1501–1511.10.1089/ten.2006.0279
  • Christie GW, Barratt-Boyes BG. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets? Ann Thorac Surg.1995;60(2Suppl):S195–S199. 10.1016/0003-4975(95)00279-T
  • Kalejs M, Stradins P, Lacis R, et al. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves – comparison of mechanical properties. Interact Cardiovasc Thorac Surg. 2009;8(5):553–556.10.1510/icvts.2008.196220
  • Stradins P, Lacis R, Ozolanta I, et al. Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardio-Thorac Surg. 2004;26:634–639.10.1016/j.ejcts.2004.05.043
  • Anssari-Benam A, Bader DL, Screen HR. A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation. J Mater Sci Mater Med. 2011;22(2):253–262.10.1007/s10856-010-4210-6
  • Sung HW, Chang Y, Chiu CT, et al. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mater Res. 1999;47(2):116–126.10.1002/(ISSN)1097-4636
  • Zioupos P, Barbenel JC. Mechanics of native bovine pericardium. I. The multiangular behaviour of strength and stiffness of the tissue. Biomaterials. 1994;15(5):366–373.10.1016/0142-9612(94)90249-6
  • Aguiari P, Fiorese M, Iop L, et al. Mechanical testing of pericardium for manufacturing prosthetic heart valves. Interact Cardiovasc Thorac Surg. 2016;22(1):72–84.10.1093/icvts/ivv282
  • Cissell DD, Hu JC, Griffiths LG, et al. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J Biomech. 2014;47(9):1987–1996.10.1016/j.jbiomech.2013.10.041
  • Balguid A, Driessen NJ, Mol A, et al. Stress related collagen ultrastructure in human aortic valves-implications for tissue engineering. J Biomech. 2008;41(12):2612–2617.10.1016/j.jbiomech.2008.06.031
  • Masoumi N, Annabi N, Assmann A, et al. Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials. 2014;35(27):7774–7785.10.1016/j.biomaterials.2014.04.039
  • Merryman WD, EngelmayrGC, Liao, J, et al. Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Progress Pediatric Cardiol. 2006;21(21):153–160.10.1016/j.ppedcard.2005.11.001
  • Gloeckner DC, Billiar KL, Sacks MS. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve. ASAIO J. 1999;45(1):59–63.10.1097/00002480-199901000-00014
  • Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.10.1016/j.ymeth.2015.03.005
  • Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29(8):1065–1074.10.1016/j.biomaterials.2007.11.007
  • Keane TJ, Londono R, Turner NJ, et al. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33(6):1771–1781.10.1016/j.biomaterials.2011.10.054
  • Bloch O, Golde P, Dohmen PM, et al. Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng Part A. 2011;17(19–20):2399–2405.10.1089/ten.tea.2011.0046
  • Böer U, Buettner FFR, Schridde A, et al. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects. Xenotransplantation. 2017;24(2). doi: 10.1111/xen.12288.
  • Barone A, Benktander J, Teneberg S, et al. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation. 2014;21(6):510–522.10.1111/xen.2014.21.issue-6
  • Reuven EM, Leviatan Ben-Arye S, Marshanski T, et al. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 2016;23(5):381–392.10.1111/xen.2016.23.issue-5
  • Voges I, Bräsen JH, Entenmann A, et al. Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur J Cardiothorac Surg. 2013;44(4):e272–e279.10.1093/ejcts/ezt328
  • Mirsadraee S, Wilcox HE, Korossis SA, et al. Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng. 2006;12(4):763–773.10.1089/ten.2006.12.763
  • Mirsadraee S, Wilcox HE, Watterson KG, et al. Biocompatibility of acellular human pericardium. J Surg Res. 2007;143(2):407–414.10.1016/j.jss.2007.01.026
  • Vinci MC, Tessitore G, Castiglioni L, et al. Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. PLoS One. 2013;8(5):e64769.10.1371/journal.pone.0064769
  • Rankin JS, Nöbauer C, Crooke PS, et al. Techniques of autologous pericardial leaflet replacement for aortic valve reconstruction. Ann Thorac Surg. 2014;98(2):743–745.10.1016/j.athoracsur.2013.11.086
  • Liu X, Han L, Song Z, et al. Aortic valve replacement with autologous pericardium: long-term follow-up of 15 patients and in vivo histopathological changes of autologous pericardium. Interact Cardiovasc Thorac Surg. 2013;16(2):123–128.10.1093/icvts/ivs441
  • Ozaki S, Kawase I, Yamashita H, et al. Aortic valve reconstruction using autologous pericardium for patients aged less than 60 years. J Thorac Cardiovasc Surg. 2014;148(3):934–8.10.1016/j.jtcvs.2014.05.041
  • Jöbsis PD, Ashikaga H, Wen H, et al. The visceral pericardium: macromolecular structure and contribution to passive mechanical properties of the left ventricle. Am J Physiol Heart Circ Physiol. 2007;293(6):H3379–H3387.10.1152/ajpheart.00967.2007
  • Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failure. Histopathology. 2009;55(2):135–144.10.1111/his.2009.55.issue-2
  • Jamieson WR, Rosado LJ, Munro AI, et al. Carpentier-Edwards standard porcine bioprosthesis: primary failure (structural valve deterioration) by age groups. Ann. Thorac. Surg. 1988;46(2):155–162.10.1016/S0003-4975(10)65888-2
  • Wong ML, Wong JL, Vapniarsky N, et al. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials. 2016;92:1–12.10.1016/j.biomaterials.2016.03.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.