399
Views
25
CrossRef citations to date
0
Altmetric
Articles

Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan

&
Pages 683-700 | Received 27 Nov 2017, Accepted 24 Jan 2018, Published online: 02 Feb 2018

References

  • Lynn A, Brooks R, Bonfield W, et al. Repair of defects in articular joints. J Bone Joint Surg. 2004;86:1093–1099.10.1302/0301-620X.86B8.15609
  • Iwasa J, Engebretsen L, Shima Y, et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2009;17:561–577.10.1007/s00167-008-0663-2
  • Eslaminejad MB , Zomorodian E , Bagheri F . Mesenchymal stem cells in bone and cartilage regeneration. Regenerative medicine and cell therapy. 2013 . p. 131 – 153. Totowa, NJ: Humana Press.
  • S Dhinsa BS, B Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther. 2012;7:143–148.10.2174/157488812799219009
  • Doulabi AH, Mequanint K, Mohammadi H. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials. 2014;7:5327–5355.10.3390/ma7075327
  • Yoon IS, Chung CW, Sung JH, et al. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. J Biosci Bioeng. 2011;112:402–408.10.1016/j.jbiosc.2011.06.018
  • Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29:2378–2387.10.1016/j.biomaterials.2008.01.037
  • Park H, Choi B, Hu J, et al. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9:4779–4786.10.1016/j.actbio.2012.08.033
  • Henrique V, Almeida YL, Grinne M, et al. Controlled release of transforming growth factor-b3 from cartilage extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater.. 2014;10:4400–4409.
  • Cheng NC, Estes BT, Young TH, et al. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regenerat Med. 2011;6:81–93.10.2217/rme.10.87
  • Kang H, Peng J, Lu S, et al. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regenerat Med. 2014;8:442–453.10.1002/term.v8.6
  • Park H, Lim D-J, Lee S-H, et al. Nanofibrous mineralized electrospun scaffold as a substrate for bone tissue regeneration. J Biomed Nanotechnol. 2016;12:2076–2082.10.1166/jbn.2016.2306
  • Ponce Márquez SP, Martínez VS, McIntosh Ambrose WM, et al. Decellularization of bovine corneas for tissue engineering applications. Acta Biomater. 2009;5:1839–1847.10.1016/j.actbio.2009.02.011
  • Nasiri B, Mashayekhan S. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application. Biologicals. 2017;48:39–46.10.1016/j.biologicals.2017.05.008
  • Wang Q, Xu J, Jin H, et al. Artificial periosteum in bone defect repair – a review. Chin Chem Lett. 2017;28:1801–1807.10.1016/j.cclet.2017.07.011
  • Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol. 2015;72:1313–1322.10.1016/j.ijbiomac.2014.10.052
  • Baniasadi H. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol. 2015;74:360–366.10.1016/j.ijbiomac.2014.12.014
  • Archana D, Dutta PK, Dutta J. Chitosan: a potential therapeutic dressing material for wound healing. In Chitin and Chitosan for Regenerative Medicine. 2016. p. 193–227. India: Springer.
  • Lao L, Tan H, Wang Y, et al. Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids Surf B. 2008;66:218–225.10.1016/j.colsurfb.2008.06.014
  • Yan J, Li X, Liu L, et al. Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Artificial Cells Blood Substit Biotechnol. 2006;34:27–39.10.1080/10731190500430024
  • Liao J, Wang B, Huang Y, et al. Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering. ACS Omega. 2017;2:443–454.10.1021/acsomega.6b00495
  • Schrobback K, Klein TJ, Schuetz M, et al. Adult human articular chondrocytes in a microcarrier-based culture system: expansion and redifferentiation. J Orthop Res. 2011;29:539–546.10.1002/jor.v29.4
  • Hong Y, Gong Y, Gao C, et al. Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res Part A. 2008;85A:628–637.10.1002/(ISSN)1552-4965
  • Georgi N, Blitterswijk C, Karperien M. MSC or chondrocyte seeded microcarriers as building blocks for cartilage tissue engineering. Tissue Eng Part A. 2013;20:2513–2523.
  • Chen A, Chen XiaoliL, Choo Andre Boon HwaX, et al. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 2011;7:97–111.10.1016/j.scr.2011.04.007
  • Eslaminejad MB, Taghiyar L, Falahi F. Quantitative analysis of the proliferation and differentiation of rat articular chondrocytes in alginate 3D culture. Iranian Biomed J. 2009;13:153.
  • Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, et al. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014;35:970–982.10.1016/j.biomaterials.2013.10.045
  • Guo T, Xia Y, Hao G, et al. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials. 2004;25:5905–5912.10.1016/j.biomaterials.2004.01.032
  • Thakur VK, Thakur MK. Handbook of sustainable polymers. CRC Press. 2016.  Florida, USA: Boca Raton.
  • Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res Part A. 2010;95A:465–475.10.1002/jbm.a.v95a:2
  • Stoch A, Jastrzębski W, Brożek A, et al. FTIR absorption–reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. 2000;555:375–382.10.1016/S0022-2860(00)00623-2
  • Matsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials. 2013;6:637–668.10.3390/ma6020637
  • Baniasadi H, Ramazani SAA, Mashayekhan S, et al. Design, fabrication, and characterization of novel porous conductive scaffolds for nerve tissue engineering. Int J Polym Mater Polym Biomater. 2015;64:969–977.10.1080/00914037.2015.1038817
  • Peng Z, Peng Z, Shen Y. Fabrication and properties of gelatin/chitosan composite hydrogel. Polymer-Plast Technol Eng. 2011;50:1160–1164.10.1080/03602559.2011.574670
  • Spector M. Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly. 2006;136:293–301.
  • Lutolf M, Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.10.1038/nbt1055
  • Whu SW, Hung K-C, Hsieh K-H, et al. In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C. 2013;33:2855–2863.10.1016/j.msec.2013.03.003
  • Mallick SP, Pal K, Rastogi A, et al. Evaluation of poly (L-lactide) and chitosan composite scaffolds for cartilage tissue regeneration. Des Monomers Polym. 2016;19:271–282.10.1080/15685551.2015.1136535
  • Chang KY, Hung LH, Chu I, et al. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J Biomed Mater Res Part A. 2010;92A:712–723.10.1002/jbm.a.v92a:2
  • Kuo Y-C, Ku H-F, Rajesh R. Chitosan/γ-poly (glutamic acid) scaffolds with surface-modified albumin, elastin and poly-l-lysine for cartilage tissue engineering. Mater Sci Eng C. 2017;78:265–277.10.1016/j.msec.2017.04.067
  • Kim DK, In Kim JI, Sim BR, et al. Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C. 2017;78:571–578.10.1016/j.msec.2017.02.067
  • Gao Y, Liu S, Huang J, et al.The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int. 2014; 2014. Article ID: 648459.
  • Mendoza-Novelo B, Cauich-Rodríguez JV. Decellularization, stabilization and functionalization of collagenous tissues used as cardiovascular biomaterials. Biomaterials-Physics and Chemistry. 2011. China: InTech.
  • Prestwich GD, Shu XZ, Liu Y, et al.Injectable synthetic extracellular matrices for tissue engineering and repair. Tissue engineering. 2006. p. 125–133. Boston, MA: Springer.
  • Olde Damink LO, Dijkstra P, van Luyn M, et al. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17:765–773.10.1016/0142-9612(96)81413-X
  • Pieper J, Oosterhof A, Dijkstra P, et al. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials. 1999;20:847–858.10.1016/S0142-9612(98)00240-3
  • Frederick C. Biomaterials aspects of porous microcarriers for animal cell culture. Trends Biotechnol. 1990;8:131–136.
  • Karimian S.A. M, Mashayekhan S, Baniasadi H. Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method. Int J Biol Macromol. 2016;88:288–295.10.1016/j.ijbiomac.2016.03.061
  • Matsiko AL, Levingstone TJ, O'Brien FergalJ. Advanced strategies for articular cartilage defect repair. Materials. 2013;6:637–668.10.3390/ma6020637
  • Amoabediny G, Salehi-Nik N, Heli B. The role of biodegradable engineered scaffold in tissue engineering. Biomaterials Science and Engineering. 2011. China: InTech.
  • Choi S-W, Zhang Y, Yeh Y-C, et al. Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem. 2012;22:11442–11451.10.1039/c2jm16019f
  • KIM TK, YOON JJ, LEE DS, et al. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006;27:152–159.10.1016/j.biomaterials.2005.05.081
  • Wan Y, Wu H, Wen D. Porous-conductive chitosan scaffolds for tissue engineering, 1. Macromol Biosci. 2004;4:882–890.10.1002/(ISSN)1616-5195
  • Bhardwaj N, Nguyen QT, Chen AC, et al. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 2011;32:5773–5781.10.1016/j.biomaterials.2011.04.061
  • Vrana N, Builles N, Kocak H, et al. EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma. J Biomater Sci. 2007;18:1527–1545.
  • Fan J, Shang Y, Yuan Y, et al. Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture. J Mater Sci Mater Med. 2010;21:319–327.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al.Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011; 2011:19. Article ID: 290602.
  • Yan LP, Oliveira JM, Oliveira AL, et al. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012;8:289–301.10.1016/j.actbio.2011.09.037
  • Gao S, Wang S, Ramakrishna S. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. J Mater Sci Mater Med. 2005;16:367–375.
  • Ge Z, Li C, Heng BC, et al. Functional biomaterials for cartilage regeneration. J Biomed Mater Res Part A. 2012;100:2526–2536.
  • Correia CR, Moreira Teixeira LS, Moroni L, et al. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 2011;17:717–730.10.1089/ten.tec.2010.0467
  • Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res Part A. 2010;95A:465–475.10.1002/jbm.a.v95a:2
  • Ma L, Gao C, Mao Z, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–4841.10.1016/S0142-9612(03)00374-0
  • Alizadeh M, Abbasi F, Khoshfetrat A, et al. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater Sci Eng C. 2013;33:3958–3967.10.1016/j.msec.2013.05.039
  • Giannoni P, Crovace A, Malpeli M, et al. Species variability in the differentiation potential of in vitro -expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models. Tissue Eng. 2005;11:237–248.10.1089/ten.2005.11.237
  • Schulze-Tanzil G, Müller R, Kohl B, et al. Differing in vitro biology of equine, ovine, porcine and human articular chondrocytes derived from the knee joint: an immunomorphological study. Histochem Cell Biol. 2009;131:219–229.10.1007/s00418-008-0516-6
  • Adkisson HD IV, Martin JA, Amendola RL, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010;38:1324–1333.10.1177/0363546510361950
  • O’Brien FJ, Harley B, Yannas IV, et al. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–441.10.1016/j.biomaterials.2004.02.052
  • Choi B, Kim S, Lin B, et al. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces. 2014;6:20110–20121.10.1021/am505723 k
  • Almeida H, Eswaramoorthy R, Cunniffe G, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater. 2016;36:55–62.10.1016/j.actbio.2016.03.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.