634
Views
19
CrossRef citations to date
0
Altmetric
Articles

Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation

, , , , , & show all
Pages 1155-1167 | Received 08 Nov 2017, Accepted 08 Feb 2018, Published online: 21 Feb 2018

References

  • Suwantong O. Biomedical applications of electrospun polycaprolactone fiber mats. Polym Adv Technol. 2016;27(10):1264–1273.10.1002/pat.v27.10
  • Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed. 2007;46(30):5670–5703.10.1002/(ISSN)1521-3773
  • Khorshidi S, Solouk A, Mirzadeh H, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. 2016 Sep;10(9):715–738.10.1002/term.v10.9
  • Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57(4):490–500.10.1007/s11426-014-5086-y
  • Duan N, Geng X, Ye L, et al. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomed Mater. 2016 May 20;11(3):035007.10.1088/1748-6041/11/3/035007
  • Naghavi Alhosseini S, Moztarzadeh F, Kargozar S, et al. Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: In vitro study. Int J Polymeric Mat polymeric. 2015;64(9):474–480.
  • Lee EJ, Teng SH, Jang TS, et al. Nanostructured poly(epsilon-caprolactone)-silica xerogel fibrous membrane for guided bone regeneration. Acta Biomater. 2010 Sep;6(9):3557–3565.10.1016/j.actbio.2010.03.022
  • Sahoo S, Toh SL, Goh JC. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010 Apr;31(11):2990–2998.10.1016/j.biomaterials.2010.01.004
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.10.1016/j.progpolymsci.2010.04.002
  • Kim CH, Khil MS, Kim HY, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biom Mater Res Part B: Appl Biomater. 2006;78B(2):283–290.10.1002/(ISSN)1552-4981
  • Wan Y, Xiao B, Dalai S, et al. Development of polycaprolactone/chitosan blend porous scaffolds. J Mater Sci: Mater Med. 2009Mar;20(3):719–724.10.1007/s10856-008-3622-z
  • Kim YE, Kim Y-J. Effect of biopolymers on the characteristics and cytocompatibility of biocomposite nanofibrous scaffolds. Polym J. 2013;45(8):845–853.10.1038/pj.2012.234
  • Ji C, Annabi N, Hosseinkhani M, et al. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomater. 2012 Feb;8(2):570–578.10.1016/j.actbio.2011.09.028
  • Jeong WK, Oh SH, Lee JH, et al. Repair of osteochondral defects with a construct of mesenchymal stem cells and a polydioxanone/poly(vinyl alcohol) scaffold. Biotechnol Appl Biochem. 2008 Feb;49(Pt 2):155–164.10.1042/BA20070149
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008 Dec;29(34):4532–4539.10.1016/j.biomaterials.2008.08.007
  • Lim JI, Yu B, Lee Y-K. Fabrication of collagen hybridized elastic PLCL for tissue engineering [journal article]. Biotech Lett. 2008 Dec 1;30(12):2085–2090.10.1007/s10529-008-9808-0
  • Oh SH, Lee JH. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater. 2013;8(1):014101.10.1088/1748-6041/8/1/014101
  • Shi Q, Ye S, Kristalyn C, et al. Probing molecular-level surface structures of Polyethersulfone/Pluronic F127 blends using sum-frequency generation vibrational spectroscopy. Langmuir : The ACS J surf colloids. 2008 2008/08/01;24(15):7939–7946.
  • Sita R, Mani G, Agrawal CM, et al. Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic® F-108. Polymer. 2010;51(16):3706–3714.
  • Bhattacharjee A, Kumar K, Arora A, et al. Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Mater Sci Eng: C. 2016 Jun;63:266–273.10.1016/j.msec.2016.02.074
  • Mirhosseini MM, Haddadi-Asl V, Zargarian SS. Fabrication and characterization of hydrophilic poly(ε-caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci. 2016;133(17):n/a–n/a.10.1002/app.43345
  • Nam J, Huang Y, Agarwal S, et al. Materials selection and residual solvent retention in biodegradable electrospun fibers. J Appl Polym Sci. 2008;107(3):1547–1554.10.1002/(ISSN)1097-4628
  • Gil-Castell O, Badia JD, Strömberg E, et al. Effect of the dissolution time into an acid hydrolytic solvent to tailor electrospun nanofibrous polycaprolactone scaffolds. Eur Polymer J. 2017;87:174–187.10.1016/j.eurpolymj.2016.12.005
  • Ferreira JL, Gomes S, Henriques C, et al. Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and In Vitro evaluation. J Appl Polym Sci. 2014;131(22):n/a–n/a. 10.1002/app.v131.22
  • Van der Schueren L, De Schoenmaker B, Kalaoglu ÖI, et al. An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polymer J. 2011;47(6):1256–1263.10.1016/j.eurpolymj.2011.02.025
  • Shenoy SL, Bates WD, Frisch HL, et al. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer. 2005;46(10):3372–3384.10.1016/j.polymer.2005.03.011
  • Li JL, Cai YL, Guo YL, et al. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. J Biomed Mater Res Part B: Appl Biomater. 2014 May;102(4):651–658.10.1002/jbm.b.v102.4
  • Zhou Q, Zhang Z, Chen T, et al. Preparation and characterization of thermosensitive pluronic F127-b-poly(varepsilon-caprolactone) mixed micelles. Colloids Surf, B. 2011 Aug 1;86(1):45–57.10.1016/j.colsurfb.2011.03.013
  • Nien Y-H, Shih C-Y, Yang C-Y, et al. Preparation and characterization of electrospun polycaprolactone/polyethylene oxide membranes. J Polym Res. 2013;20(6).
  • Shi L-S, Wang L-Y, Wang Y-N. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. Eur Polymer J. 2006;42(7):1625–1633.10.1016/j.eurpolymj.2006.01.007
  • Liu C, Gong C, Pan Y, et al. Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers. Colloids Surf, A. 2007;302(1–3):430–438.10.1016/j.colsurfa.2007.03.006
  • Kiss E, Bertoti I, Vargha-Butler EI. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films. J Colloid Interface Sci. 2002 Jan 1;245(1):91–98.10.1006/jcis.2001.7954
  • Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007 Jul;28(20):3074–3082.10.1016/j.biomaterials.2007.03.013
  • Vasita R, Katti DS. Structural and functional characterization of proteins adsorbed on hydrophilized polylactide-co-glycolide microfibers. Int J Nanomed. 2012;7:61–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.