851
Views
31
CrossRef citations to date
0
Altmetric
Articles

Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy

, , , , , , , & show all
Pages 1287-1301 | Received 29 Jan 2018, Accepted 16 Mar 2018, Published online: 27 Mar 2018

References

  • Liu K, Xing R, Zou Q, et al. Simple peptide tuned self assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed. 2016;55:3036–3039.10.1002/anie.201509810
  • Kim JR, Michielsen S. Photodynamic antifungal activities of nanostructured fabrics grafted with rose bengal and phloxine B against Aspergillus fumigatus.  J Appl Polym Sci. 2015;231:42114(1)–42114(9).
  • Agostinis P, Berg K, Cengel K, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61:250–281.10.3322/caac.v61:4
  • Zhang N, Zhao F, Zou Q, et al. Multitriggered tumor responsive drug delivery vehicles based on protein polypeptide coassembly for enhanced photodynamic tumor ablation. Small. 2016;12:5936–5943.10.1002/smll.201602339
  • Abbas M, Zou Q, Li S, et al. Self assembled peptide protein based nanomaterials for antitumor photodynamic photothermal therapy. Adv Mater. 2017;29:1605021.10.1002/adma.v29.12
  • Jia X, Jia L. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy. Curr Drug Metab. 2012;13:1119–1122.10.2174/138920012802850074
  • Siqueira-Moura MP, Primo FL, Espreafico EM, et al. Development characterization photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules. Materials Science and Engineering: C. 2013;33:1744–1752.10.1016/j.msec.2012.12.088
  • Goto P, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm. 2017; 518: 228–241.10.1016/j.ijpharm.2017.01.004
  • Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60:1627–1637.10.1016/j.addr.2008.08.003
  • Konan YN, Gurny R, Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B. 2002;66:89–106.10.1016/S1011-1344(01)00267-6
  • Tu J, Wang T, Shi W, et al. Multifunctional ZnPc loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape. Biomaterials. 2012;33:7903–7914.10.1016/j.biomaterials.2012.07.025
  • Fadel M, Kassab K, Abdel Fadeel D. Zinc phthalocyanine loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor bearing mice. Lasers Med Sci. 2010;25:283–292.10.1007/s10103-009-0740-x
  • Qian W, Wei W, Hong M, et al. Microwave assisted synthesis of ZnPc COOH SiO2/ZnPc COOH nanopaticles Singlet oxygen production photocatalytic property. Colloids Surf A. 2014;443:52–59.10.1016/j.colsurfa.2013.10.056
  • Donnelly R, McCarron P, Woolfson D. Drug delivery systems for photodynamic therapy. Recent Pat Drug Delivery Formulation. 2009;3:1–7.10.2174/187221109787158319
  • de Paula LB, Primo FL, Pinto MR, et al. Evaluation of a chloroaluminium phthalocyanine loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia photodynamic therapy. RSC Adv. 2017;7:9115–9122.10.1039/C6RA26105A
  • Fox M, Zilberman M. Drug delivery from gelatin based systems. Expert Opin Drug Delivery. 2015;12:1547–1563.10.1517/17425247.2015.1037272
  • Katrin K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49:6288–6308.
  • Coester C, Langer K, Von Briesen H, et al. Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake.  J Microencapsul. 2000;17:187–193.
  • Kumari A, Yadav SK, Yadav S. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B. 2010;75:1–18.10.1016/j.colsurfb.2009.09.001
  • Dehalu V, Weigel S, Rebe S, et al. Production characterization of antibodies against crosslinked gelatin nanoparticles first steps toward developing an ELISA screening kit. Anal Bioanal Chem. 2012;403:2851–2857.10.1007/s00216-012-5793-1
  • Jun-hua X, Fu-ping G, Xue-feng L, et al. Supramolecular gelatin nanoparticles as matrixmetalloproteinase responsive cancer cell imaging probes. Chem Commun. 2013;49:4462–4464.
  • Azimi B, Nourpanah P, Rabiee M, et al. Producing gelatin nanoparticles as delivery system for bovine serum albumin.  Iran Biomed J. 2014;18:34–40.
  • Shutava T, Balkundi S, Vangala P, et al. Layer by layer coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano. 2009;3:1877–1885.10.1021/nn900451a
  • Saxena A, Sachin K, Bohidar H, et al. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano particles. Colloids Surf B. 2005;45:42–48.10.1016/j.colsurfb.2005.07.005
  • Das P, Jana N. Dopamine functionalized polymeric nanoparticle for targeted drug delivery. RSC Advances. 2015;5:33586–33594.10.1039/C5RA03302K
  • Arunkumar R, Veerappa K, Prashanth H, et al. Biodegradable poly (lactic-co-glycolic acid)–polyethylene glycol nanocapsules: an efficient carrier for improved solubility, bioavailability, and anticancer property of lutein.  Pharm Nanotechnol. 2015;104:2085–2093.
  • Vijayakumar V, Subramanian K. Diisocyanate mediated polyether modified gelatin drug carrier for controlled release. Saud Pharm J. 2014;22:43–51.10.1016/j.jsps.2013.01.005
  • Simioni AR, Primo FL, Tedesco AC. Silicon(IV) phthalocyanine-loaded-nanoparticles for application in photodynamic process. J Laser Appl. 2012;24:012004(1)–012004(9).
  • Bajpai A, Choubey J. Release study of sulphamethoxazole controlled by swelling of gelatin nanoparticles drug biopolymer interaction. J Macromol Sci A. 2005;42:253–275.10.1081/MA-200050357
  • Patil S, Sandberg A, Heckert E, et al. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28:4600–4607.10.1016/j.biomaterials.2007.07.029
  • Puttipipatkhachorn S, Nunthanid J, Yamamoto K, et al. Drug physical state and drug–polymer interaction on drug release from chitosan matrix films. J. Controlled Release. 2001;75:143–153.10.1016/S0168-3659(01)00389-3
  • Naidu BVK, Paulson AT. A new method for the preparation of gelatin nanoparticles Encapsulation drug release characteristics. J Appl Polym Sci. 2011;121:3495–3500.10.1002/app.34171
  • Morrison ID. Criterion for electrostatic stability of dispersions at low ionic strength. Langmuir. 1991;7:1920–1922.10.1021/la00057a017
  • Ravel R. Clinical laboratory medicine: clinical application of laboratory data. 6th ed. St. Louis: Mosby; 1995.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 2). Trop J Pharm Res. 2013;12:265–273.
  • Graf C, Gao Q, Schütz I, et al. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media facilitates internalization in cells. Langmuir. 2012;28:7598–7613.10.1021/la204913t
  • Csaba N, Garcia-Fuentes M, José Alonso M. The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Delivery. 2006;3:463–478.10.1517/17425247.3.4.463
  • Zou Q, Abbas M, Zhao L, et al. Biological photothermal nanodots based on self assembly of peptide porphyrin conjugates for antitumor therapy. J Am Chem Soc. 2017;139:1921–1927.10.1021/jacs.6b11382
  • Yoshida T, Furuyama T, Kobayashi N. Synthesis optical properties of tetraazaporphyrin phosphorus(V) complexes with electron rich heteroatoms. Tetrahedron Lett. 2015;56:1671–1674.10.1016/j.tetlet.2015.02.033
  • Yu H, Yang J, Fu Q, et al. Synthesis spectroscopic properties of a series of new tetra substituted metal phthalocyanines. Chem Res Chin Univ. 2008;24:123–128.10.1016/S1005-9040(08)60026-4
  • Gabrielli DS, Belisle E, Severino D, et al. Binding aggregation photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol. 2004;79:227–232.
  • Abrahamse H, Hamblin M. New photosensitizers for photodynamic therapy. Biochem J. 2016;473:347–364.10.1042/BJ20150942
  • Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc. 2013;46:7–23.
  • Souto G, Farhane Z, Casey A, et al. Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles.  Anal Bioanal Chem. 2016;408:5443–5455.
  • Hao H, Ma Q, Huang C, et al. Preparation characterization in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm. 2013; 444: 77–84.10.1016/j.ijpharm.2013.01.041
  • Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115:1990–2042.10.1021/cr5004198
  • Ang CY, Tan SY, Wu S, et al. Synthesis application of polyacrylic acid based nanoparticles for photodynamic therapy. J Control Release. 2015;213:e20–e21.10.1016/j.jconrel.2015.05.030
  • Chitgupi U, Qin Y, Lovell JF. Targeted nanomaterials for phototherapy. Nanotheranostics. 2017;1:38–58.10.7150/ntno.17694
  • Da Silva A, Franco AS, Ricci-Júnior E, et al.  Action of the anti tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly ε caprolactone internalized by peritoneal macrophages. Adv Nat Sci Nanosci Nanotech. 2016;7:035017(1)–035017(7).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.