631
Views
34
CrossRef citations to date
0
Altmetric
Articles

Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites

, , &
Pages 1302-1318 | Received 26 Dec 2017, Accepted 22 Mar 2018, Published online: 02 Apr 2018

References

  • Oliveira HM, Moreira FT, Sales MGF. Ciprofloxacin-imprinted polymeric receptors as ionophores for potentiometric transduction. Electrochim Acta. 2011;56(5):2017–2023.10.1016/j.electacta.2010.11.082
  • Sun X, Wang J, Li Y, et al. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples. J Chromatogr A. 2014;1359:1–7.
  • Samanidou VF, Demetriou CE, Papadoyannis IN. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC. Anal Bioanal Chem. 2003;375(5):623–629.
  • Ionescu RE, Jaffrezic-Renault N, Bouffier L, et al. Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens Bioelectron. 2007;23(4):549–555.10.1016/j.bios.2007.07.014
  • Li D, Yan Z-Y, Cheng W-Q. Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe. Spectrochim Acta Part A Mol Biomol Spectrosc. 2008;71(4):1204–1211.10.1016/j.saa.2008.03.024
  • Wang J, Dai J, Meng M, et al. Surface molecularly imprinted polymers based on yeast prepared by atom transfer radical emulsion polymerization for selective recognition of ciprofloxacin from aqueous medium. J Appl Polym Sci. 2014;131(11):40310.
  • Gao B, He XP, Jiang Y, et al. Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing. J Sep Sci. 2014;37(24):3753–3759.10.1002/jssc.v37.24
  • Qiao F, Sun H. Simultaneous extraction of enrofloxacin and ciprofloxacin from chicken tissue by molecularly imprinted matrix solid-phase dispersion. J Pharm Biomed Anal. 2010;53(3):795–798.10.1016/j.jpba.2010.06.008
  • Torriero AA, Salinas E, Raba J, et al. Sensitive determination of ciprofloxacin and norfloxacin in biological fluids using an enzymatic rotating biosensor. Biosens Bioelectron. 2006;22(1):109–115.10.1016/j.bios.2005.12.004
  • Madhuri R, Roy E, Gupta K, et al. Combination of molecular imprinting and nanotechnology: beginning of a new horizon. In: Ashutosh T, Anthony T, editors. Biosensors nanotechnology. New Jersey: John Wiley & Sons, Inc.; 2014. p. 375–432.
  • Urraca J, Castellari M, Barrios C, et al. Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography. J Chromatogr A. 2014;1343:1–9.10.1016/j.chroma.2014.03.045
  • Desai UH, Patwari AH, Maradiya JK, et al. RP-HPLC method for simultaneous estimation of ciprofloxacin and dexamethasone in eye/ear drops. Internat J Pharm Sci Drug Res. 2013;5(2):62–66.
  • Yan H, Row KH, Yang G. Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine. Talanta. 2008;75(1):227–232.
  • Cazedey EC, Bonfilio R, Araújo MB, et al. A first-derivative spectrophotometric method for the determination of ciprofloxacin hydrochloride in ophthalmic solution. Phys Chem. 2012;2(6):116–122.
  • Torriero AA, Ruiz-Díaz JJ, Salinas E, et al. Enzymatic rotating biosensor for ciprofloxacin determination. Talanta. 2006;69(3):691–699.10.1016/j.talanta.2005.11.005
  • Caro E, Marcé RM, Cormack PA, et al. Direct determination of ciprofloxacin by mass spectrometry after a two-step solid-phase extraction using a molecularly imprinted polymer. J Sep Sci. 2006;29(9):1230–1236.10.1002/(ISSN)1615-9314
  • Barrón D, Jiménez-Lozano E, Cano J, et al. Determination of residues of enrofloxacin and its metabolite ciprofloxacin in biological materials by capillary electrophoresis. J Chromatogr B Biomed Sci Appl. 2001;759(1):73–79.10.1016/S0378-4347(01)00214-6
  • Horstkötter C, Jiménez-Lozano E, Barrón D, et al. Determination of residues of enrofloxacin and its metabolite ciprofloxacin in chicken muscle by capillary electrophoresis using laser-induced fluorescence detection. Electrophoresis. 2002;23(17):3078–3083.10.1002/(ISSN)1522-2683
  • Zhou X, Xing D, Zhu D, et al. Development and application of a capillary electrophoresis–electrochemiluminescent method for the analysis of enrofloxacin and its metabolite ciprofloxacin in milk. Talanta. 2008;75(5):1300–1306.10.1016/j.talanta.2008.01.040
  • Quinn JG, O’Neill S, Doyle A, et al. Development and application of surface plasmon resonance-based biosensors for the detection of cell–ligand interactions. Anal Biochem. 2000;281(2):135–143.10.1006/abio.2000.4564
  • Suraniti E, Sollier E, Calemczuk R, et al. Real-time detection of lymphocytes binding on an antibody chip using SPR imaging. Lab Chip. 2007;7(9):1206–1208.10.1039/b708292d
  • Choi J-W, Park K-W, Lee D-B, et al. Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance. Biosens Bioelectron. 2005;20(11):2300–2305.10.1016/j.bios.2004.11.019
  • Vaisocherová H, Šípová H, Víšová I, et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron. 2015;70:226–231.10.1016/j.bios.2015.03.038
  • Yoo SM, Kim D-K, Lee SY. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta. 2015;132:112–117.10.1016/j.talanta.2014.09.003
  • Jin Y, Wong KH, Granville AM. Enhancement of Localized Surface Plasmon Resonance polymer based biosensor chips using well-defined glycopolymers for lectin detection. J Colloid Interface Sci. 2016;462:19–28.10.1016/j.jcis.2015.09.047
  • Chen H, Qi F, Zhou H, et al. Fe 3 O 4@ Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection. Sens Actuators B. 2015;212:505–511.10.1016/j.snb.2015.02.062
  • Chang C-C, Chiu N-F, Lin DS, et al. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem. 2010;82(4):1207–1212.10.1021/ac901797j
  • Uludag Y, Tothill IE. Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem. 2012;84(14):5898–5904.10.1021/ac300278p
  • Uzun L, Say R, Ünal S, et al. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron. 2009;24(9):2878–2884.10.1016/j.bios.2009.02.021
  • Sener G, Ozgur E, Rad AY, et al. Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor. Analyst. 2013;138(21):6422–6428.10.1039/c3an00958 k
  • Sato Y, Ikegaki S, Suzuki K, et al. Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid. J Biomater Sci Polym Ed. 2003;14(8):803–820.10.1163/156856203768366530
  • Zhu Z, Feng M, Zuo L, et al. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron. 2015;65:320–326.10.1016/j.bios.2014.10.059
  • Mauriz E, Calle A, Lechuga LM, et al. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta. 2006;561(1):40–47.10.1016/j.aca.2005.12.069
  • Shaikh H, Sener G, Memon N, et al. Molecularly imprinted surface plasmon resonance (SPR) based sensing of bisphenol A for its selective detection in aqueous systems. Anal Methods. 2015;7(11):4661–4670.10.1039/C5AY00541H
  • Shrivastav AM, Mishra SK, Gupta BD. Fiber optic SPR sensor for the detection of melamine using molecular imprinting. Sens Actuators B. 2015;212:404–410.10.1016/j.snb.2015.02.028
  • Sari E, Üzek R, Duman M, et al. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta. 2016;150:607–614.10.1016/j.talanta.2015.12.043
  • Hoa X, Kirk A, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron. 2007;23(2):151–160.10.1016/j.bios.2007.07.001
  • Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens Actuators. 1983;4:299–304.10.1016/0250-6874(83)85036-7
  • Zeng S, Baillargeat D, Ho H-P, et al. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43(10):3426–3452.10.1039/c3cs60479a
  • Chen L, Wang X, Lu W, et al. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45(8):2137–2211.10.1039/C6CS00061D
  • Wang X, Yu J, Li J, et al. Quantum dots based imprinting fluorescent nanosensor for the selective and sensitive detection of phycocyanin: a general imprinting strategy toward proteins. Sens Actuators B. 2018;255:268–274.10.1016/j.snb.2017.08.068
  • Yu J, Wang X, Kang Q, et al. One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environ Sci Nano. 2017;4(2):493–502.
  • Amatatongchai M, Sroysee W, Jarujamrus P, et al. Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode. Talanta. 2018;179:700–709.10.1016/j.talanta.2017.11.064
  • El Gohary NA, Madbouly A, El Nashar RM, et al. Voltammetric determination of valaciclovir using a molecularly imprinted polymer modified carbon paste electrode. Electroanalysis. 2017;29(5):1388–1399.10.1002/elan.v29.5
  • Smolinska-Kempisty K, Ahmad OS, Guerreiro A, et al. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosens Bioelectron. 2017;96:49–54.10.1016/j.bios.2017.04.034
  • Canfarotta F, Czulak J, Betlem K, et al. A novel thermal detection method based on molecularly imprinted nanoparticles as recognition elements. Nanoscale. 2018;10(4):2081–2089.
  • Diliën H, Peeters M, Royakkers J, et al. Label-free detection of small organic molecules by molecularly imprinted polymer functionalized thermocouples: toward in vivo applications. ACS Sens. 2017;2(4):583–589.10.1021/acssensors.7b00104
  • Atay S, Pişkin K, Yılmaz F, et al. Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods. 2016;8(1):153–161.10.1039/C5AY02898A
  • Sari E, Üzek R, Duman M, et al. Prism coupler-based sensor system for simultaneous screening of synthetic glucocorticosteroid as doping control agent. Sens Actuators B. 2018;260:432–444.
  • De-Bashan LE, Moreno M, Hernandez J-P, et al. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 2002;36(12):2941–2948.10.1016/S0043-1354(01)00522-X
  • Yoo H, Ahn K-H, Lee H-J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Res. 1999;33(1):145–154.10.1016/S0043-1354(98)00159-6
  • Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. Int J Pharm. 1996;132(1–2):53–61.10.1016/0378-5173(95)04332-2
  • Sukul P, Spiteller M. Fluoroquinolone antibiotics in the environment. In: Reviews of environmental contamination and toxicology: Springer; 2007. p. 131–162.
  • Schasfoort RB, Tudos AJ. Handbook of surface plasmon resonance. London: Royal Society of Chemistry; 2008.10.1039/9781847558220
  • Rushton GT, Karns CL, Shimizu KD. A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Anal Chim Acta. 2005;528(1):107–113.10.1016/j.aca.2004.07.048
  • Umpleby RJ, Baxter SC, Rampey AM, et al. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B. 2004;804(1):141–149.10.1016/j.jchromb.2004.01.064
  • Tretjakov A, Syritski V, Reut J, et al. Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim Acta. 2013;180(15–16):1433–1442.10.1007/s00604-013-1039-y
  • Guo Z, Chen L, Lv H, et al. Magnetic imprinted surface enhanced Raman scattering (MI-SERS) based ultrasensitive detection of ciprofloxacin from a mixed sample. Anal Methods. 2014;6(6):1627–1632.10.1039/C3AY40866C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.