528
Views
31
CrossRef citations to date
0
Altmetric
Articles

Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration

, , , ORCID Icon, &
Pages 1375-1388 | Received 20 Jan 2018, Accepted 03 Apr 2018, Published online: 25 Apr 2018

References

  • Ananth H, Kundapur V, Mohammed HS, et al. A review on biomaterials in dental implantology. Int J Biomed Sci. 2015;11(3):113–120.
  • Radzi S, Cowin G, Robinson M, et al. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of tibial pilon: a quantitative assessment. Imaging Med Surg. 2014;4(3):163–172.
  • Siddiqi A, Payne AG, De Silva RK, et al. Titanium allergy: could it affect dental implant integration? Clin Oral Implant Res. 2011;22(7):673–680.10.1111/clr.2011.22.issue-7
  • Wenz LM, Merritt K, Brown SA, et al. In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res. 1990;24(2):207–215.10.1002/(ISSN)1097-4636
  • Rivard CH, Rhalmi S, Coillard S. In vivo biocompatibility testing of PEEK polymer for a spinal implant system: a study in rabbit. J Biomed Mater Res. 2002;62(4):488–498.10.1002/(ISSN)1097-4636
  • Katzer A, Marquardt H, Westendorf J, et al. Polyetheretherketone cytotoxicity and mutagenicity in vitro. Biomaterials. 2002;23(8):1749–1759.10.1016/S0142-9612(01)00300-3
  • Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos Sci Technol. 2003;63:421–425.10.1016/S0266-3538(02)00230-0
  • Ma R, Tang S, Tan H, et al. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Appl Mater Interfaces. 2014;6(15):12214–12225.10.1021/am504409q
  • Jung HD, Park HS, Kang MH, et al. Reinforcement of polyetheretherketone polymer with titanium for improved mechanical properties and in vitro biocompatibility. J Biomed Mater Res B Appl Biomater. 2016;104(1):141–148.10.1002/jbm.b.33361
  • Wu X, Liu X, Wei J, et al. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomedicine. 2012;7:1215–1225.
  • Elias CN, Oshida Y, Lima JH, et al. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1(3):234–242.10.1016/j.jmbbm.2007.12.002
  • Grassi S, Piattelli A, de Figueiredo LC, et al. Histologic evaluation of early human bone response to different implant surfaces. J Periodontol. 2006;77(10):1736–1743.10.1902/jop.2006.050325
  • Brentel AS, de Vasconcellos LM, Oliveira MV, et al. Histomorphometric analysis of pure titanium implants with porous surface versus rough surface. J Appl Oral Sci. 2006;14(3):213–218.10.1590/S1678-77572006000300013
  • Toita R, Sunarso, Rashid AN, et al. Modulation of the osteoconductive property and immune response of poly(ether ether ketone) by modification with calcium ions. J Mater Chem B. 2015;3:8738–8746.10.1039/C5TB01679G
  • Sunarso, Toita R, Tsuru K, et al. A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses. J Mater Sci Mater Med. 2016; 27(8):127–135.
  • Sunarso, Toita R, Tsuru K, et al. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants. Mater Sci Eng C. 2016;68:291–298.10.1016/j.msec.2016.05.090
  • Valanezhad A, Tsuru K, Ishikawa K. Fabrication of strongly attached hydoxyapatite coating on titanium by hydrothermal treatment of Ti-Zn-PO4 coated titanium in CaCl2 solution. J Mater Sci Mater Med. 2015;26(7):212–221.10.1007/s10856-015-5548-6
  • Shi X, Xu L, Le TB, et al. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity. Mater Sci Eng C. 2016;59:542–548.10.1016/j.msec.2015.10.024
  • Brentel AS, de Vasconcellos LM, Oliveira MV, et al. Histomorphometric analysis of pure titanium implants with porous surface versus rough surface. J Appl Oral Sci. 2006;14:213–218.10.1590/S1678-77572006000300013
  • Khoury J, Kirkpatrick SR, Maxwell M, et al. Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instrum Methods Phys Res Sect B. 2013;307:630–634.10.1016/j.nimb.2012.11.087
  • Zheng Y, Xiong C, Zhang S, et al. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique. Mater Sci Eng C. 2015;55:512–523.10.1016/j.msec.2015.05.070
  • Nishiguchi S, Fujibayashi S, Kim HM, et al. Biology of alkali- and heat-treated titanium implants. J Biomed Mater Res. 2003;67A(1):26–35.10.1002/(ISSN)1097-4636
  • Zhao Y, Wong HM, Wang W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34(37):9264–9277.10.1016/j.biomaterials.2013.08.071
  • Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone system. Nat Rev Immunol. 2007;7(4):292–304.10.1038/nri2062
  • Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–6709.10.1016/j.biomaterials.2011.05.078
  • Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005;26(11):1271–1286.10.1016/j.biomaterials.2004.04.035
  • Omar OM, Lenneras ME, Suska F, et al. The stimulation of an osteogenic response by classical monocyte activation. Biomaterials. 2011;32(2):374–386.10.1016/j.biomaterials.2010.09.011
  • Ma QL, Zhao LZ, Liu RR, et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials. 2014;35(37):9853–9867.10.1016/j.biomaterials.2014.08.025
  • Khan UA, Hashimi SM, Bakr MM, et al. CCL2 and CCR2 are essential for the formation of osteoclasts and foreign body giant cells. J Cell Biochem. 2016;117(2):382–389.10.1002/jcb.25282
  • Chen W, Shao Y, Li X, et al. Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today. 2014;9(6):759–784.10.1016/j.nantod.2014.12.002
  • Janson IA, Putnam AJ. Extracellular matrix elasticity and topography: material-based cues that affect cell function via concerved mechanisms. J Biomed Mater Res A. 2015;103(3):1246–1258.10.1002/jbm.a.35254
  • Le Guehennec L, Soueidn A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–854.10.1016/j.dental.2006.06.025
  • Ourahmoune R, Salvia M, Mathia TG, et al. Surface morphology and wettability of sandblasted PEEK and its composites. Scanning. 2014;36(1):64–75.10.1002/sca.v36.1
  • Kubiak KJ, Wilson MCT, Mathia TG, et al. Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters. Scanning. 2011;33(5):370–377.10.1002/sca.v33.5
  • Engel E, Martinez E, Mills CA, et al. Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates. Ann Anat. 2009;191(1):136–144.10.1016/j.aanat.2008.07.013
  • Bartneck M, Schulte VA, Paul NE, et al. Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater. 2010;6(10):3864–3872.10.1016/j.actbio.2010.04.025
  • Lu J, Webster TJ. Reduced immune cell responses on nano and submicron rough titanium. Acta Biomater. 2015;16:223–231.10.1016/j.actbio.2015.01.036
  • Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials. 2011;32(32):8048–8057.10.1016/j.biomaterials.2011.07.035
  • Faia-Torres AB, Charnley M, Goren T, et al. Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: a surface-roughness gradient study. Acta Biomater. 2015;28:64–75.10.1016/j.actbio.2015.09.028
  • Kilian KA, Buagarija B, Lahn BT, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Nat Acad Sci. 2010;107(11):4872–4877.10.1073/pnas.0903269107
  • McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–495.10.1016/S1534-5807(04)00075-9
  • Tang J, Peng R, Ding J. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials. 2010;31(9):2470–2476.10.1016/j.biomaterials.2009.12.006
  • Danen EHJ, Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol. 2001;189(1):1–13.10.1002/(ISSN)1097-4652
  • Rechendoff K, Hovgaard MB, Foss M, et al. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22(26):10885–10888.10.1021/la0621923
  • Xu A, Liu X, Gao X, et al. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. Mater Sci Eng C. 2015;48:592–598.10.1016/j.msec.2014.12.061
  • Navarrete RO, Hyzy SL, Slosar PJ, et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine. 2015;40(6):399–404.10.1097/BRS.0000000000000778
  • Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99–126.10.1146/annurev.pathmechdis.3.121806.151456
  • Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127(22):8168–8173.10.1021/ja042898o
  • Deng ZJ, Liang M, Monteiro M, et al. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011;6(1):39–44.10.1038/nnano.2010.250
  • Jozefowski W, Marcinkiewicz J. Aggregates of denatured proteins stimulate nitric oxide and superoxide production in macrophages. Inflamm Res. 2010;59(4):277–289.10.1007/s00011-009-0096-5
  • De Leonardis D, Garg AK, Pecora GE. Osseointegration of rough acid-etched titanium implants: 5-year follow-up of 100 minimatic implants. Int J Oral Maxillofac Implants. 1999;14(3):384–391.
  • Li D, Ferguson SJ, Beutler T, et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res. 2002;60(2):325–332.10.1002/(ISSN)1097-4636
  • Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants. 2000;15(1):15–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.