361
Views
14
CrossRef citations to date
0
Altmetric
Articles

Synthetic polymannose as a drug carrier: synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates

, &
Pages 1529-1548 | Received 23 Jan 2018, Accepted 22 Apr 2018, Published online: 15 May 2018

References

  • Basu A, Kunduru KR, Abtew E, et al. Polysaccharide-based conjugates for biomedical applications. Bioconjug Chem. 2015;26:1396–1412.
  • Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev. 2012;41:2623–2640.
  • PAWAR R, Bhusare S, Jadhav W, et al. Polysaccharides as carriers of bioactive agents for medical applications. In: Reis RL, Neves NM, Mano JF, et al., editors. Natural based polymers for biomedical applications. 1st ed. Florida (FL): CRC Press LLC; 2008. p. 3–53.
  • Saravanakumar G, Park JH, Kim K, et al. Polysaccharide-based drug conjugates for tumor targeting. In: Kratz F, Senter P, Steinhagen H, editors. Drug delivery in oncology. Weinheim: Wiley-VCH; 2011. p. 701–746.
  • Kim S, Kim JH, Jeon O, et al. Engineered polymers for advanced drug delivery. Eur J Pharm. Biopharm. 2009;71:420–430.
  • Galbis JA, García-Martín MdG, de Paz MV, et al. Synthetic polymers from sugar-based monomers. Chem Rev. 2015;116:1600–1636.
  • Miura Y, Fukuda T, Seto H, et al. Development of glycosaminoglycan mimetics using glycopolymers. Polym J. 2016;48:229–237.
  • Koide H, Yoshimatsu K, Hoshino Y, et al. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF 165). Nat Chem. 2017;9:715–722.
  • Terada Y, Hashimoto W, Endo T, et al. Signal amplified two-dimensional photonic crystal biosensor immobilized with glyco-nanoparticles. J Mater Chem B. 2014;2:3324–3332.
  • Liu X, Siegrist S, Amacker M, et al. Enhancement of the immunogenicity of synthetic carbohydrates by conjugation to virosomes: a leishmaniasis vaccine candidate. ACS Chem Biol. 2006;1:161–164.
  • Fridkin SK, Jarvis WR. Epidemiology of nosocomial fungal infections. Clin Microbiol Rev. 1996;9:499–511.
  • Berman J. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis. 1997;24:684–703.10.1093/clind/24.4.684
  • Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49:7–10.10.1093/jac/49.suppl_1.7
  • Falk R, Domb AJ, Polacheck I. A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob Agents Chemother. 1999;43:1975–1981.
  • Falk R, Grunwald J, Hoffman A, et al. Distribution of amphotericin B-arabinogalactan conjugate in mouse tissue and its therapeutic efficacy against murine aspergillosis. Antimicrob Agents Chemother. 2004;48:3606–3609.10.1128/AAC.48.9.3606-3609.2004
  • Farber S, Ickowicz D, Sionov E, et al. Galactomannan–amphotericin B conjugate: synthesis and biological activity. Polym Adv Technol. 2011;22:119–125.10.1002/pat.v22.1
  • Hudson SP, Langer R, Fink GR, et al. Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials. 2010;31:1444–1452.10.1016/j.biomaterials.2009.11.016
  • Nishi K, Antony M, Mohanan P, et al. Amphotericin B-gum arabic conjugates: synthesis, toxicity, bioavailability, and activities against Leishmania and fungi. Pharm Res. 2007;24:971–980.10.1007/s11095-006-9222-z
  • Kothandaraman GP, Ravichandran V, Bories C, et al. Anti-fungal and anti-leishmanial activities of pectin-amphotericin B conjugates. J Drug Delivery Sci Technol. 2017;39:1–7.10.1016/j.jddst.2017.02.010
  • Ravichandran V, Jayakrishnan A. Synthesis and evaluation of anti-fungal activities of sodium alginate-amphotericin B conjugates. Int J Biol Macromol. 2018;108:1101–1109. DOI:10.1016/j.ijbiomac.2017.11.030
  • Ravichandran V, Kothandaraman GP, Bories C, et al. Synthetic polysaccharides as drug carriers: synthesis of polyglucose-amphotericin B conjugates and in vitro evaluation of their anti-fungal and anti-leishmanial activities. J Nanosci Nanotechnol. 2018;18:2405–2414.10.1166/jnn.2018.14296
  • Fernández N, Alonso S, Valera I, et al. Mannose-containing molecular patterns are strong inducers of cyclooxygenase-2 expression and prostaglandin E2 production in human macrophages. J Immunol. 2005;174:8154–8162.10.4049/jimmunol.174.12.8154
  • Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol. 2003;33:483–493.10.1002/immu.200310024
  • Schultze JL, Schmieder A, Goerdt S. Macrophage activation in human diseases. Semin Immunol. 2015;27:249–256.10.1016/j.smim.2015.07.003
  • Mora PT, Wood JW, McFarland VW. Synthetic polysaccharides. V. Polymerization of various aldoses. J Am Chem Soc. 1960;82:3418–3421.10.1021/ja01498a045
  • Bulmus V, Woodward M, Lin L, et al. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J Controlled Release. 2003;93:105–120.10.1016/j.jconrel.2003.06.001
  • Tan TRM, Hoi KM, Zhang P, et al. Characterization of a polyethylene glycol-amphotericin B conjugate loaded with free AMB for improved antifungal efficacy. PLoS ONE. 2016;11:e0152112.10.1371/journal.pone.0152112
  • Wang H, Cheng X, Shi Y, et al. Preparation and structural characterization of poly-mannose synthesized by phosphoric acid catalyzation under microwave irradiation. Carbohydr Polym. 2015;121:355–361.
  • Ližičárová I, Matulová M, Capek P, et al. Human pathogen Candida dubliniensis: a cell wall mannan with a high content of β-1, 2-linked mannose residues. Carbohydr Polym. 2007;70:89–100.
  • Ližičárová I, Matulová M, Machová E, et al. Cell wall mannan of human pathogen Candida dubliniensis. Carbohydr Polym. 2007;68:191–195.
  • Patra S, Patra P, Maity KK, et al. A heteroglycan from the mycelia of Pleurotus ostreatus: structure determination and study of antioxidant properties. Carbohyd Res. 2013;368:16–21.10.1016/j.carres.2012.12.003
  • Kobayashi H, Takaku M, Nishidate Y, et al. Structure of the D-mannan of the pathogenic yeast, Candida stellatoidea ATCC 20408 (type II) strain, in comparison with that of C. stellatoidea ATCC 36232 (type I) strain. Carbohyd Res. 1992;231:105–116.10.1016/0008-6215(92)84012-H
  • Tojo M, Shibata N, Ban Y, et al. Structure of the d-mannan of Candida stellatoidea IFO 1397 strain. Comparison with that of the phospho-d-mannan of Candida albicans NIH B-792 strain. Carbohyd Res. 1990;199:215–226.10.1016/0008-6215(90)84263-T
  • Vieira AC, Serra AC, Carvalho RA, et al. Microwave synthesis and in vitro stability of diclofenac-β-cyclodextrin conjugate for colon delivery. Carbohyd Polym. 2013;93:512–517.10.1016/j.carbpol.2012.12.053
  • Zhang A-Q, Liu Y, Xiao N-N, et al. Structural investigation of a novel heteropolysaccharide from the fruiting bodies of Boletus edulis. Food Chem. 2014;146:334–338.10.1016/j.foodchem.2013.09.073
  • Liu C, Lin Q, Gao Y, et al. Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs. Carbohyd Polym. 2007;67:313–318.10.1016/j.carbpol.2006.05.024
  • Cantor SM, Peniston QP. The reduction of aldoses at the dropping mercury cathode: Estimation of the aldehydo structure in aqueous solutions. J Am Chem Soc. 1940;62:2113–2121.10.1021/ja01865a056
  • Zhao H, Heindel ND. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res. 1991;8:400–402.10.1023/A:1015866104055
  • Balakrishnan B, Lesieur S, Labarre D, et al. Periodate oxidation of sodium alginate in water and in ethanol–water mixture: a comparative study. Carbohyd Res. 2005;340:1425–1429.10.1016/j.carres.2005.02.028
  • Bouhadir KH, Hausman DS, Mooney DJ. Synthesis of cross-linked poly (aldehyde guluronate) hydrogels. Polymer. 1999;40:3575–3584.10.1016/S0032-3861(98)00550-3
  • Ickowicz DE, Farber S, Sionov E, et al. Activity, reduced toxicity, and scale-up synthesis of amphotericin B-conjugated polysaccharide. Biomacromolecules. 2014;15:2079–2089.10.1021/bm5002125
  • Legrand P, Romero EA, Cohen BE, et al. Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother. 1992;36:2518–2522.10.1128/AAC.36.11.2518
  • Barwicz J, Christian S, Gruda I. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992;36:2310–2315.10.1128/AAC.36.10.2310
  • Larabi M, Gulik A, Dedieu J-P. New lipid formulation of amphotericin B: spectral and microscopic analysis. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2004;1664:172–181.10.1016/j.bbamem.2004.05.003
  • Schwartzman G, Asher I, Folen V, et al. Ambiguities in IR and X-Ray characterization of amphotericin B. J Pharm Sci. 1978;67:398–400.10.1002/jps.2600670334
  • Gagoś M, Arczewska M. FTIR spectroscopic study of molecular organization of the antibiotic amphotericin B in aqueous solution and in DPPC lipid monolayers containing the sterols cholesterol and ergosterol. Eur Biophys J. 2012;41:663–673.
  • Sokolsky-Papkov M, Domb AJ, Golenser J. Impact of aldehyde content on amphotericin B−dextran imine conjugate toxicity. Biomacromolecules. 2006;7:1529–1535.10.1021/bm050747n
  • Hervault A, Dunn AE, Lim M, et al. Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale. 2016;8:12152–12161.10.1039/C5NR07773G
  • Ding C, Tong L, Feng J, et al. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules. 2016;21:1715. DOI:10.3390/molecules21121715
  • Gurudevan S, Francis AP, Jayakrishnan A. Amphotericin B-albumin conjugates: Synthesis, toxicity and anti-fungal activity. Eur J Pharm Sci. 2018;115:167–174.10.1016/j.ejps.2018.01.017
  • Conover CD, Zhao H, Longley CB, et al. Utility of poly(ethylene glycol) conjugation to create prodrugs of amphotericin B. Bioconjug Chem. 2003;14:661–666.10.1021/bc0256594
  • Chen C, Cheng YC, Yu CH, et al. In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly (3-hydroxybutyrate)–poly(ethylene glycol)-poly (3-hydroxybutyrate) nanoparticles as potential drug carriers. J Biomed Mater Res. 2008;87A:290–298.10.1002/jbm.a.v87a:2
  • Zhao C, Shao L, Lu J, et al. Tumor acidity-induced sheddable polyethylenimine-poly (trimethylene carbonate)/DNA/polyethylene glycol-2, 3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery. ACS Appl Mater Interfaces. 2016;8:6400–6410.10.1021/acsami.6b00825
  • Omran M, Fabb S, Dickson G. Biochemical and morphological analysis of cell death induced by Egyptian cobra (Naja haje) venom on cultured cells. J Venomous Anim Toxins Incl Trop Dis. 2004;10:219–241.10.1590/S1678-91992004000300004
  • Francis AP, Murthy PB, Devasena T. Bis-demethoxy curcumin analog nanoparticles: synthesis, characterization, and anticancer activity in vitro. J Nanosci Nanotechnol. 2014;14:4865–4873.10.1166/jnn.2014.9219
  • Azad AK, Rajaram MV, Schlesinger LS. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J Cytol Mol Biol. 2014;1:1000003. DOI:10.13188/2325-4653.1000003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.