703
Views
6
CrossRef citations to date
0
Altmetric
Articles

A photo-switchable and thermal-enhanced fluorescent hydrogel prepared from N-isopropylacrylamide with water-soluble spiropyran derivative

, , , , &
Pages 1579-1594 | Received 29 Mar 2018, Accepted 10 May 2018, Published online: 01 Jun 2018

References

  • Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun. 2010;46(23):4094–4096.10.1039/c002565h
  • Ziółkowski B, Florea L, Theobald J, et al. Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators. Soft Matter. 2013;9(36):8754–8760.10.1039/c3sm51386f
  • Wang N, Zhang J, Sun L, et al. Gene-modified cell detachment on photoresponsive hydrogels strengthened through hydrogen bonding. Acta Biomater. 2014;10(6):2529–2538.10.1016/j.actbio.2014.02.017
  • Uchiyama S, Kimura K, Gota C, et al. Environment-sensitive fluorophores with benzothiadiazole and benzoselenadiazole structures as candidate components of a fluorescent polymeric thermometer. Chem Eur J. 2012;18(31):9552–9563.10.1002/chem.201200597
  • Ma C, Lu W, Yang X, et al. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv Func Mater. 2018;28(7):1704568.10.1002/adfm.v28.7
  • Zhang X-Y, Zheng Y, Liu C-H, et al. Facile and large scale in situ synthesis of the thermal responsive fluorescent SiNPs/PNIPAM hydrogels. RSC Advances. 2016;6(60):55666–55670.10.1039/C6RA09534H
  • Kim S-H, Hwang I-J, Gwon S-Y, et al. Photoregulated optical switching of poly(N-isopropylacrylamide) hydrogel in aqueous solution with covalently attached spironaphthoxazine and D-π-A type pyran-based fluorescent dye. Dyes Pigm. 2010;87(2):158–163.10.1016/j.dyepig.2010.03.014
  • Hamilton GRC, Fullerton L, McCaughan B, et al. A ratiometric fluorescent hydrogel sensor for zinc(ii) based on a two fluorophore approach. New J Chem. 2014;38(7):2823–2830.10.1039/C4NJ00291A
  • Marsh D. Reaction fields in the environment of fluorescent probes: polarity profiles in membranes. Biophys J . 2009;96(7):2549–2558.10.1016/j.bpj.2009.01.006
  • Heo YJ, Shibata H, Okitsu T, et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Nat Acad Sci. 2011;108(33):13399–13403.10.1073/pnas.1104954108
  • Li Y, Lee M, Kim N, et al. Spatiotemporal control of TGF-β signaling with light. ACS Synthetic Biology. 2018;7(2):443–451.10.1021/acssynbio.7b00225
  • ter Schiphorst J, van den Broek M, de Koning T, et al. Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran-NIPAAm-hydrogel. J Mater Chem A. 2016;4(22):8676–8681.10.1039/C6TA00161K
  • Chen S, Jiang F, Cao Z, et al. Photo, pH, and thermo triple-responsive spiropyran-based copolymer nanoparticles for controlled release. Chem Commun. 2015;51(63):12633–12636.10.1039/C5CC04087F
  • Chen S, Bian Q, Wang P, et al. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem. 2017;8(39):6150–6157.10.1039/C7PY01424D
  • Oh YJ, Nam JA, Al-Nahain A, et al. Spiropyran-conjugated pluronic as a dual responsive colorimetric detector. Macromol Rapid Commun. 2012;33(22):1958–1963.10.1002/marc.v33.22
  • Zhu M-Q, Zhang G-F, Hu Z, et al. Reversible fluorescence switching of spiropyran-conjugated biodegradable nanoparticles for super-resolution fluorescence imaging. Macromolecules. 2014;47(5):1543–1552.10.1021/ma5001157
  • Xue Y, Tian J, Tian W, et al. Significant fluorescence enhancement of spiropyran in colloidal dispersion and its light-induced size tunability for release control. J Phys Chem C. 2015;119(35):20762–20772.10.1021/acs.jpcc.5b06905
  • Chibisov AK, Görner H. Photoprocesses in spirooxazines and their merocyanines. J Phys Chem C. 1999;103(26):5211–5216.10.1021/jp984822i
  • Hur DY, Park TJ, Shin EJ. Synthesis and solvent-dependent photochromic reactions of porphyrin–spiropyran hybrid compounds. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;117(117c):541–547.10.1016/j.saa.2013.08.005
  • Zhu MQ, Zhu LY, Han JJ, et al. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc. 2006;128(13):4303–4309.10.1021/ja0567642
  • Baillet G, Campredon M, Guglielmetti R, et al. Dealkylation of N-substituted indolinospironaphthoxazine photochromic compounds under UV irradiation. J Photochem Photobiol A. 1994;83(2):147–151.10.1016/1010-6030(94)03816-3
  • Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev. 2014;43(1):148–184.10.1039/C3CS60181A
  • Irie M, Iwayanagi T, Taniguchi Y. Photoresponsive polymers. 7. Reversible solubility change of polystyrene having pendant spirobenzopyran groups and its application to photoresists. Macromolecules. 1985;18(12):2418–2422.10.1021/ma00154a014
  • Zhu M-Q, Zhang G-F, Li C, et al. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. J Am Chem Soc. 2011;133(2):365–372.10.1021/ja106895 k
  • Chan Y-H, Gallina ME, Zhang X, et al. Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots. Anal Chem. 2012;84(21):9431–9438.10.1021/ac302245t
  • Bardavid Y, Goykhman I, Nozaki D, et al. Dipole assisted photogated switch in spiropyran grafted polyaniline nanowires. J Phys Chem C. 2011;115(7):3123–3128.10.1021/jp110665j
  • Connal LA, Franks GV, Qiao GG. Photochromic metal-absorbing honeycomb structures. Langmuir. 2010;26(13):10397–10400.
  • Fujimoto K, Amano M, Horibe Y, et al. Reversible photoregulation of helical structures in short peptides under indoor lighting/dark conditions. Org Lett. 2006;8(2):285–287.10.1021/ol0526524
  • Hirakura T, Nomura Y, Aoyama Y, et al. Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules. 2004;5(5):1804–1809.10.1021/bm049860o
  • Osborne EA, Jarrett BR, Tu C, et al. Modulation of T2 relaxation time by light-induced, reversible aggregation of magnetic nanoparticles. J Am Chem Soc. 2010;132(17):5934–5935.10.1021/ja100254 m
  • Piech M, Bell NS. Controlled synthesis of photochromic polymer brushes by atom transfer radical polymerization. Macromolecules. 2006;39(3):915–922.10.1021/ma0512760
  • Wang JY, Chen L, Zhao YP, et al. Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels. J Mater Sci-Mater El. 2009;20(2):583–590.10.1007/s10856-008-3593-0
  • Stumpel JE, Liu DQ, Broer DJ, et al. Photoswitchable hydrogel surface topographies by polymerisation-induced diffusion. Chem Eur J. 2013;19(33):10922–10927.10.1002/chem.201300852
  • Chen J, Zeng F, Wu S, et al. A core–shell nanoparticle approach to photoreversible fluorescence modulation of a hydrophobic dye in aqueous media. Chem Eur J. 2008;14(16):4851–4860.10.1002/(ISSN)1521-3765
  • Nuvoli D, Alzari V, Nuvoli L, et al. Synthesis and characterization of poly(2-hydroxyethylacrylate)/β-cyclodextrin hydrogels obtained by frontal polymerization. Carbohyd Polym. 2016;150:166–171.10.1016/j.carbpol.2016.05.017
  • Shibayama M, Fujikawa Y, Nomura S. Dynamic light scattering study of poly( N -isopropylacrylamide- co -acrylic acid) gels. Macromolecules. 1996;29(20):6535–6540.10.1021/ma960320w
  • Udayabhaskararao T, Kundu PK, Ahrens J, et al. Reversible photoisomerization of spiropyran on the surfaces of Au-25 nanoclusters. ChemPhysChem. 2016;17(12):1805–1809.10.1002/cphc.201500897
  • Park IS, Jung Y-S, Lee K-J, et al. Photoswitching and sensor applications of a spiropyran-polythiophene conjugate. Chem Commun. 2010;46(16):2859–2861.10.1039/b926211c
  • Wu Y, Wang L, Qing Y, et al. A green route to prepare fluorescent and absorbent nano-hybrid hydrogel for water detection. Sci Rep. 2017;7(1):1.10.1038/s41598-017-04542-7
  • Baillet G, Giusti G, Guglielmetti R. Comparative photodegradation study between spiro[indoline – oxazine] and spiro[indoline – pyran] derivatives in solution. J Photochem Photobiol A. 1993;70(2):157–161.10.1016/1010-6030(93)85036-8
  • Whelan J, Wojtyk JTC, Buncel E. Enhanced bistability of a photochromic microparticle in condensed medium. Chem Mater. 2008;20(12):3797–3799.10.1021/cm800635h
  • Han J, Wang K, Yang D, et al. Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. Int J Biol Macromol. 2009;44(3):229–235.10.1016/j.ijbiomac.2008.12.009
  • Carrillo F, Defays B, Colom X. Surface modification of lyocell fibres by graft copolymerization of thermo-sensitive poly-N-isopropylacrylamide. Eur Polymer J. 2008;44(12):4020–4028.10.1016/j.eurpolymj.2008.09.033
  • Lee E-M, Gwon S-Y, Ji B-C, et al. Multiple switching behaviors of poly(N-isopropylacrylamide) hydrogel with spironaphthoxazine and D-π-A type dye. J Lumin. 2012;132(3):665–670.10.1016/j.jlumin.2011.09.025
  • Lee E-M, Gwon S-Y, Ji B-C, et al. Multi-responsive poly(N-isopropylacrylamide) hydrogel with D-π-A type dye. J Lumin. 2011;131(9):2004–2009.10.1016/j.jlumin.2011.04.028
  • Uchiyama S, Matsumura Y, de Silva AP, et al. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal Chem. 2003;75(21):5926–5935.10.1021/ac0346914
  • Uchiyama S, Kawai N, de Silva AP, et al. Fluorescent polymeric and logic gate with temperature and pH as inputs. J Am Chem Soc. 2004;126(10):3032–3033.10.1021/ja039697p
  • Lee SM, Chung WY, Kim JK, et al. A novel fluorescence temperature sensor based on a surfactant-free PVA/borax/2-naphthol hydrogel network system. J Appl Polym Sci. 2004;93(5):2114–2118.10.1002/(ISSN)1097-4628
  • Song Q, Yang Y, Gao K, et al. Study on the novel rare-earth nanocrystals/PNIPAM complex hydrogels prepared by surface-initiated living radical polymerization. J Lumin. 2013;136:437–443.10.1016/j.jlumin.2012.12.005
  • Yang Y, Song Q, Gao K, et al. LaF3: Eu3+nanocrystal/PNIPAM nanogels: preparation, thermosensitive fluorescence performance and use as bioprobes for monitoring drug release. J Appl Polym Sci. 2014;131(4):1001–1007.
  • Huang CQ, Wang Y, Hong CY, et al. Spiropyran-based polymeric vesicles: preparation and photochromic properties. Macromol Rapid Commun. 2011;32(15):1174–1179.10.1002/marc.v32.15
  • Lovell JF, Roxin A, Ng KK, et al. Porphyrin-cross-linked hydrogel for fluorescence-guided monitoring and surgical resection. Biomacromolecules. 2011;12(9):3115–3118.10.1021/bm200784s
  • Xia LY, Zhang X, Cao M, et al. Enhanced fluorescence emission and singlet oxygen generation of photosensitizers embedded in injectable hydrogels for imaging-guided photodynamic cancer therapy. Biomacromolecules. 2017;18(10):3073–3081.10.1021/acs.biomac.7b00725
  • Geuskens G, Soukrati A. Investigation of polyacrylamide hydrogels using 1-anilinonaphthalene-8-sulfonate as fluorescent probe. Eur Polymer J. 2000;36(8):1537–1546.10.1016/S0014-3057(99)00226-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.