617
Views
24
CrossRef citations to date
0
Altmetric
Articles

Combining electrospun nanofibers with cell-encapsulating hydrogel fibers for neural tissue engineering

, , , , , , & ORCID Icon show all
Pages 1625-1642 | Received 19 Feb 2018, Accepted 17 May 2018, Published online: 03 Jun 2018

References

  • Bruns J, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44:2–10. doi:10.1046/j.1528-1157.44.s10.3.x.
  • Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2014;37(5):659–660. doi: 10.1179/1079026814z.000000000341.
  • Asplund M, Nilsson M, Jacobsson A. Holst Hv. incidence of traumatic peripheral nerve injuries and amputations in Sweden between 1998 and 2006. NED. 2009;32(3):217–228. doi: 10.1159/000197900.
  • Taylor CA, Braza D, Rice JB, et al. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–385. doi:10.1097/PHM.0b013e31815e6370.
  • Houle JD, Tom VJ, Mayes D, et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci. 2006;26(28):7405–7415. doi:10.1523/jneurosci.1166-06.2006.
  • Alilain WJ, Horn KP, Hu H, et al. Functional regeneration of respiratory pathways after spinal cord injury. Nature. 2011;475(7355):196–200. doi:10.1038/nature10199.
  • Lee Y-S, Lin C-Y, Jiang H-H, et al. Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury. J Neurosci. 2013;33(26):10591–10606. doi:10.1523/jneurosci.1116-12.2013.
  • Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163–201. doi:10.1016/j.pneurobio.2007.06.005.
  • Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001;2(4):263–273. doi:10.1038/35067570.
  • Corey JM, Lin DY, Mycek KB, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res Part A. 2007;83(3):636–645. PubMed PMID: 17508416.10.1002/(ISSN)1552-4965
  • Purcell EK, Naim Y, Yang A, et al. Combining topographical and genetic cues to promote neuronal fate specification in stem cells. Biomacromol. 2012;13(11):3427–3438. doi:10.1021/Bm301220 k. PubMed PMID: ISI:000310931900001.
  • Leach MK, Feng ZQ, Gertz CC, et al. The culture of primary motor and sensory neurons in defined media on electrospun poly-L-lactide nanofiber scaffolds. J Vis Exp. 2011;48. doi:10.3791/2389. Epub 2011/03/05. 2389 [pii]. PubMed PMID: 21372783; PubMed Central PMCID: PMC3197391.
  • Gertz CC, Leach MK, Birrell LK, et al. Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Dev Neurobiol. 2010;70(8):589–603. doi:10.1002/dneu.20792. Epub 2010/03/10. PubMed PMID: 20213755.
  • Corey JM, Gertz CC, Wang BS, et al. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomater. 2008;4(4):863–875. PubMed PMID: 18396117.10.1016/j.actbio.2008.02.020
  • Feng ZQ, Wu JH, Cho WR, et al. Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano- and microscale fibers and tubes. Polymer. 2013;54(2):702–708. doi:10.1016/j.polymer.2012.10.057. PubMed PMID: ISI:000314085000029.
  • Wang HB, Mullins ME, Cregg JM, et al. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng. 2009;6:016001. doi:10.1088/1741-2560/6/1/016001.
  • Lee Y-S, Livingston AT. Electrospun nanofibrous materials for neural tissue engineering. Polymers. 2011;3(1):413–426. doi:10.3390/polym3010413.
  • Schaub NJ, Johnson CD, Cooper B, et al. Electrospun fibers for spinal cord injury research and regeneration. J Neurotrauma. 2015;33(15):1405–1415. doi:10.1089/neu.2015.4165.
  • Hurtado A, Cregg JM, Wang HB, et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials. 2011;32(26):6068–6079. doi:10.1016/j.biomaterials.2011.05.006.
  • Yu W, Zhao W, Zhu C, et al. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(epsilon-caprolactone) nerve conduit with tailored degradation rate. BMC Neuroscience. 2011;12(1):68. doi:10.1186/1471-2202-12-68.
  • Zamani F, Tehran MA, Latifi M, et al. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds. J Biomed Mater Res Part A. 2013;00A. doi: 10.1002/jbm.a.34703.
  • Gelain F, Panseri S, Antonini S, et al. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano. 2011;5(1):227–236. doi:10.1021/nn102461w.
  • Jiang X, Mi R, Hoke A, et al. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J Tissue Eng Regener Med.. 2014;8(5):377–385. doi:10.1002/term.1531.
  • Panseri S, Cunha C, Lowery J, et al. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 2008;8:39. doi:10.1186/1472-6750-8-39.
  • Neal RA, Tholpady SS, Foley PL, et al. Alignment and composition of laminin–polycaprolactone nanofiber blends enhance peripheral nerve regeneration. J Biomed Mater Res Part A. 2012;100A(2):406–423. doi:10.1002/jbm.a.33204.
  • Chew SY, Mi R, Hoke A, et al. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Func Mater. 2007;17(8):1288–1296. doi:10.1002/adfm.200600441.
  • Liu C, Huang Y, Pang M, et al. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS ONE. 2015;10(3):e0117709. doi:10.1371/journal.pone.0117709.
  • Hackelberg S, Tuck SJ, He L, et al. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS ONE. 2017;12(7):e0180427. doi:10.1371/journal.pone.0180427.
  • Li S, Wang L, Yu X, et al. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding. Mater Sci Eng C. 2018;82:299–309. doi:10.1016/j.msec.2017.08.031.
  • Baker AEG, Tam RY, Shoichet MS. Independently tuning the biochemical and mechanical properties of 3D hyaluronan-based hydrogels with oxime and diels-alder chemistry to culture breast cancer spheroids. Biomacromol. 2017;18(12):4373–4384. doi:10.1021/acs.biomac.7b01422.
  • Mauri E, Sacchetti A, Vicario N, et al. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater Sci. 2018;6(3):501–510. doi:10.1039/c7bm01056 g. Epub 2018/01/26. PubMed PMID: 29368775.
  • Wan ACA, Liao IC, Yim EKF, et al. Mechanism of fiber formation by interfacial polyelectrolyte complexation. Macromolecules. 2004;37(18):7019–7025. doi:10.1021/ma0498868. PubMed PMID: ISI:000223677600052.
  • Wan ACA, Cutiongco MFA, Tai BCU, et al. Fibers by interfacial polyelectrolyte complexation – processes, materials and applications. Mater Today. 2016;19(8):437–450. doi:10.1016/j.mattod.2016.01.017.
  • Lu HF, Lim S-X, Leong MF, et al. Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds. Biomaterials. 2012;33(36):9179–9187. doi:10.1016/j.biomaterials.2012.09.006.
  • Kurita K, Koyama Y, Nishimura S-I, et al. Facile preparation of water-soluble chitin from chitosan. Chem Lett. 1989;18(9):1597–1598. doi:10.1246/cl.1989.1597.
  • Rueden CT, Schindelin J, Hiner MC, et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529. doi:10.1186/s12859-017-1934-z.
  • Tuck SJ, Leach MK, Feng ZQ, et al. Critical variables in the alignment of electrospun PLLA nanofibers. Mater Sci Eng C. 2012;32(7):1779–1784. doi:10.1016/j.msec.2012.04.060.
  • Leong MF, Toh JK, Du C, et al. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nature Commun. 2013;4:2353. doi:10.1038/ncomms3353. Epub 2013/08/21. PubMed PMID: 23955534.
  • Nisbet DR, Moses D, Gengenbach TR, et al. Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scaffolds for the repair of spinal cord injury. J Biomed Mater Res Part A. 2009;89A(1):24–35. doi:10.1002/jbm.a.31962.
  • Corey JM, Wheeler BC, Brewer GJ. Micrometer resolution silane-based patterning of hippocampal neurons: critical variables in photoresist and laser ablation processes for substrate fabrication. IEEE Trans Biomed Eng. 1996;43(9):944–955. PubMed PMID: 9214810.10.1109/10.532129
  • Perale G, Giordano C, Bianco F, et al. Hydrogel for cell housing in the brain and in the spinal cord. Int J Artifi Organs. 2011;34(3):295–303. doi:10.5301/ijao.2011.6488.
  • Zhou Z, Yu P, Geller HM, et al. The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. Biomaterials. 2012;33(8):2473–2481. doi:10.1016/j.biomaterials.2011.12.005.
  • Palazzolo Gemma BN, Orlando C, Harald D, et al. Ultrasoft alginate hydrogels support long-term three-dimensional functional neuronal networks. Tissue Eng Part A. 2015;21(15–16):2177–2185. doi:10.1089/ten.tea.2014.0518. Epub May 19, 2015.
  • Beduer A, Braschler T, Peric O, et al. A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Adv Healthc Mater. 2015;4(2):301–312. doi:10.1002/adhm.201400250. Epub 2014/09/03. PubMed PMID: 25178838.
  • Brewer GJ, Torricelli JR, Evege EK, et al. Optimized survival of hippocampal neurons in B27-supplemented neurobasal?, a new serum-free medium combination. J Neurosci Res. 1993;35(5):567–576. PubMed PMID: 8377226.10.1002/(ISSN)1097-4547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.