541
Views
9
CrossRef citations to date
0
Altmetric
Article

Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with tunable properties

, , , , , & show all
Pages 2068-2082 | Received 15 Apr 2018, Accepted 22 Jun 2018, Published online: 24 Dec 2018

References

  • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–198. doi: 10.1016/j.addr.2007.08.041.
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47. doi: 10.1038/nbt1055.
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010.
  • Slaughter BV, Khurshid SS, Fisher OZ, et al. Hydrogels in regenerative medicine. Adv Mater. 2009;21(32–33):3307–3329. doi: 10.1002/adma.200802106.
  • Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655–663. doi: 10.1002/bit.22361.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351. doi: 10.1016/S0142-9612(03)00340-5.
  • Malafaya PB, Silva GA, Reis RL. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59(4):207–233. doi: 10.1016/j.addr.2007.03.012.
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–124. doi: 10.1163/156856201744489.
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271. doi: 10.1016/j.biomaterials.2015.08.045.
  • Benton JA, DeForest CA, Vivekanandan V, et al. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng Part A. 2009;15(11):3221–3230. doi: 10.1089/ten.tea.2008.0545.
  • Nichol JW, Koshy ST, Bae H, et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536–5544. doi: 10.1016/j.biomaterials.2010.03.064.
  • Shin SR, Jung SM, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369–2380. doi: 10.1021/nn305559j.
  • Chen YC, Lin RZ, Qi H, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22(10):2027–2039. doi: 10.1002/adfm.201101662.
  • Xiao W, He J, Nichol JW, et al. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater. 2011;7(6):2384–2393. doi: 10.1016/j.actbio.2011.01.016.
  • Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials. 2012;33(11):3143–3152. doi: 10.1016/j.biomaterials.2011.12.050.
  • Hutson CB, Nichol JW, Aubin H, et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng Part A. 2011;17(13–14):1713–1723. doi: 10.1089/ten.tea.2010.0666.
  • Shin Su R, Aghaei‐Ghareh‐Bolagh B, Dang Tram T, et al. Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater. 2013;25(44):6385–6391. doi: 10.1002/adma.201301082.
  • Hassanzadeh P, Kazemzadeh-Narbat M, Rosenzweig R, et al. Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mater Chem B. 2016;4(15):2539–2543. doi: 10.1039/C6TB00021E.
  • Maryam E, Nihal Engin V, Pinar Z, et al. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. J Biomater Appl. 2014;29(3):399–410. doi: 10.1177/0885328214530589.
  • Coburn J, Gibson M, Bandalini PA, et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst. 2011;7(3):213–222.
  • Visser J, Melchels FPW, Jeon JE, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun. 2015;6:6933. doi: 10.1038/ncomms7933.
  • Maranchi JP, Trexler MM, Guo Q, et al. Fibre-reinforced hydrogels with high optical transparency. Int Mater Rev. 2014;59(5):264–296. doi: 10.1179/1743280414Y.0000000032.
  • Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–416. doi: 10.1016/S0142-9612(02)00353-8.
  • Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science (New York, NY). 2010;329(5991):528–531. doi: 10.1126/science.1188936.
  • Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature. 2002;418:741. doi: 10.1038/418741a.
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8):991–1007. doi: 10.1016/j.progpolymsci.2007.05.013.
  • Mandal BB, Grinberg A, Seok Gil E, et al. High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci. 2012;109(20):7699.
  • Yodmuang S, McNamara SL, Nover AB, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015;11:27–36. doi: 10.1016/j.actbio.2014.09.032.
  • Lu Q, Zhang X, Hu X, et al. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Macromol Biosci. 2010;10(3):289–298. doi: 10.1002/mabi.200900258.
  • Mandal BB, Mann JK, Kundu SC. Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur J Pharm Sci. 2009;37(2):160–171. doi: 10.1016/j.ejps.2009.02.005.
  • Cao Y, Poon YF, Feng J, et al. Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls. Biomaterials. 2010;31(24):6228–6238. doi: 10.1016/j.biomaterials.2010.04.059.
  • Nebel M, Zhang B, Odoardi F, et al. Calcium signalling triggered by NAADP in T cells determines cell shape and motility during immune synapse formation. Messenger. 2015;4(1):104–111. doi: 10.1166/msr.2015.1045.
  • Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008;4(6):1611–1619. doi: 10.1016/j.actbio.2008.06.008.
  • Li G, Li F, Zheng Z, et al. Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility. J Mater Sci. 2016;51(6):3025–3035. doi: 10.1007/s10853-015-9613-9.
  • Nakayama A, Kakugo A, Gong JP, et al. High mechanical strength double‐network hydrogel with bacterial cellulose. Adv Funct Mater. 2004;14(11):1124–1128. doi: 10.1002/adfm.200305197.
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34. doi: 10.1016/S0939-6411(03)00161-9.
  • Lee KY, Rowley JA, Eiselt P, et al. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules. 2000;33(11):4291–4294. doi: 10.1021/ma9921347.
  • Mao AS, Shin J-W, Mooney DJ. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials. 2016;98:184–191. doi: 10.1016/j.biomaterials.2016.05.004.
  • Mellati A, Fan CM, Tamayol A, et al. Microengineered 3D cell‐laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng. 2016;114(1):217–231. doi: 10.1002/bit.26061.
  • Zhou M, Smith AM, Das AK, et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials. 2009;30(13):2523–2530. doi: 10.1016/j.biomaterials.2009.01.010.
  • Pogoda K, Bucki R, Byfield FJ, et al. Soft substrates containing hyaluronan mimic the effects of increased stiffness on morphology, motility, and proliferation of glioma cells. Biomacromolecules. 2017;18(10):3040–3051. doi: 10.1021/acs.biomac.7b00324.
  • Trappmann B, Chen CS. How cells sense extracellular matrix stiffness: a material's perspective. Curr Opin Biotechnol. 2013;24(5):948–953. doi: 10.1016/j.copbio.2013.03.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.