252
Views
4
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the resistance to bacterial growth of star-shaped poly(ε-caprolactone)-co-poly(ethylene glycol) grafted onto functionalized carbon nanotubes nanocomposites

, , , , , , & show all
Pages 163-189 | Received 26 Oct 2018, Accepted 09 Dec 2018, Published online: 12 Jan 2019

References

  • Pérez RA, López JV, Hoskins JN. Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε-caprolactones). Macromolecules. 2014;47:3553–3566.
  • Riehemann K, Schneider SW, Luger TA, et al. Nanomedicine-challenge and perspectives. Angew Chem Int Ed Engl. 2009;48:872–897.
  • Revathi S, Vuyyuru M, Dhanaraju MD. Carbon nanotube: a flexible approach for nanomedicine and drug delivery. Asian J Pharm Clin Res. 2015;8:25–31.
  • Vashist A, Kaushik A, Vashist A, et al. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthcare Mater. 2018;7:1701213.
  • Bottini M, Rosato N, Bottini N. PEG-Modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules. 2011;12:3381–3393.
  • Cherukuri P, Bachilo SM, Litovsky SH, et al. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc. 2004;126:15638–15639.
  • Rao AM, Richter E, Bandow S, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science. 1997;275:187–191.
  • Grunlun JC, Mehrabi AR, Bannon MV, et al. Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater. 2004;16:150–153.
  • Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health. 2017;59:394–407.
  • Lam CW, James JT, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36:189–217.
  • Garriga R, Jurewicz I, Seyedin S, et al. Multifunctional, biocompatible and pH-responsive carbon nanotube-and graphene oxide/tectomer hybrid composites and coatings. Nanoscale. 2017;9:7791–7804.
  • Donaldson K, Lang Tran C, MacNee W. Deposition and effects of fine and ultrafine particles in the respiratory tract. Eur Respir. 2002;21:77–92.
  • Jin GZ, Kim M, Shin US, et al. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett. 2011;501:10–14.
  • Zhang D, Deng X, Ji Z, et al. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice. Nanotechnology. 2010;21:175101.
  • Muller J, Huaux F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207:221–231.
  • Boyles MSP, Young L, Brown DM, et al. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than of asbestos. Toxicol Vitro. 2015;29:1513–1528.
  • Li H, Tan X-Q, Yan L, et al. Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway. Sci Rep. 2017;7:226.
  • Rahman L, Jacobsen NR, Aziz SA, et al. Multi-walled carbon naotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: investigating the mechanisms of pulmonary carcinogenesis. Mutat Res. 2017;823:28–44.
  • Poulsen SS, Saber AT, Williams A, et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 2015;284:16–32.
  • Vardharajula S, Ali SZ, Tiwari PM, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomed. 2012;7:5361–5374.
  • Jafar A, Alshatti Y, Ahmad A. Carbon nanotube toxicity: the smallest biggest debate in medical care. Cogent Med. 2016;3:1217970.
  • Qi W, Tian L, An W, et al. Curing the toxicity of multi-walled carbon nanotubes through native small-molecule drugs. Sci Rep. 2017;7:2815.
  • Sacchetti C, Liu-Bryan R, Magrini A, et al. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACSNano. 2014;8:12280–12291. ):
  • Ren Q, Chen J, Chu F, et al. Graphene/star polymer nanocoating. Prog Org Coat. 2017;103:15–22.
  • Durmaz H, Dag A, Tunca U, et al. Synthesis and characterization of pyrene bearing amphiphilic miktoarm star polymer and its noncovalent interactions with mutiwalled carbon nanotubes. J Polym Sci A Polym Chem. 2012;50:2406–2414.
  • Gorur M, Yilmaz F, Kilic A, et al. Synthesis of pyrene end-capped A6 dendrimer and star polymer with phosphazene core via “click chemistry. J Polym Sci A Polym Chem. 2011;49:3193–3206.
  • Jing Z, Shi X, Zhang G, Poly (L. lactide)/four-armed star poly(L-lactide)-grafted multiwalled carbon nanotubes nanocomposites: Preparation, rheology, crystallization, and mechanical properties. Polym Compos. 2016;37:2744–2755.
  • Jiang H, He J, Tao Y, et al. Synthesis and characterization of star-branched poly(ε-caprolactone). Polym J. 2003;35:598–602.
  • Pitt CG, Chasalow FI, Hibionada YM, et al. Aliphatic polyesters. I. The degradation of poly(ε-caprolactone) in vivo. J Appl Polym Sci. 1981;26:3779–3787.
  • Pitt CG. Poly(ε-caprolactone) and its copolymers. In: Chasin M, Langer R, editors. Biodegradable polymers as drug delivery systems. New York (NY): Marcel Dekker; 1990. p. 71–120.
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–124.
  • Yen M-S, Kuo S-C. PCL-PEG-PCL triblock copolydiol-based waterborne polyurethane. I. Effects of the soft-segment composition on the structure and physical properties. J Appl Polym Sci. 1997;65:883–892.
  • Liu CB, Gong CY, Huang MJ, et al. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res Part B Appl Biomater. 2008;84:165–175.
  • Hwang MJ, Suh JM, Bae YH, et al. Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules. 2005;6:885–890.
  • Pazarceviren E, Erdemli O, Keskin D, et al. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. J Biomater Appl. 2017;31:1148–1168.
  • Kumar A, Lale SV, Mahajan S, et al. ROP and ATRP fabricated dual targeted redox sensitive polymersomes based on pPEGMA-PCL-ss-PCL-pPEGMA triblock copolymers for breast cancer therapeutics. ACS Appl Mater Interfaces. 2015;7:9211–9227.
  • Liu L, Zheng M, Librizzi D, et al. Efficient and tumor targeted siRNA delivery by polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). Mol Pharmaceutics. 2016;13:134–143.
  • Kutikov AB, Song J. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater Sci Eng. 2015;1:463–480.
  • Shah K, Vasileva D, Karadaghy A, et al. Development and characterization of polyethylene glycol-carbon nanotube hydrogel composite. J Mater Chem B. 2015;3:7950–7962.
  • Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–660.
  • Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67:351–368.
  • Silva-Jara JM, Manríquez-González R, López-Dellamary FA, et al. Semi-continuous heterophase polymerization to synthesize nanocomposites of poly(acrylic acid)-functionalized carbon nanotubes. J Macromol Sci Pure Appl Chem. 2015;52:732–744.
  • Xia R, Li M, Zhang Y, et al. Surface modification of MWNTs with BA-MMA-GMA terpolymer by single-step-grafting technique. J Appl Polym Sci. 2011;119:282–289.
  • Tinajero-Díaz E, Guerrero-Ramírez LG, Manríquez-González R, et al. Star-shaped poly(ε-caprolactone)-co-poly(ethylene glycol) synthesized with oxalyl chloride as linker molecule. J Macromol Sci Pure Appl Chem. 2014;51:499–510.
  • Clinical and Laboratory Standards Institute (CSLI). Performance Standards for Antimicrobial Susceptibility Testing. Twenty-fourth informational supplement: CSLI; 2014. M100-524.CLSI,WAYNE,PA.
  • Official methods of analysis of AOAC International. Testing disinfentants against Staphylococcus aureus. Vol. I, Chap 6. 17th Edition: AOAC; 2002. Official methods 991.48.
  • Official methods of analysis of AOAC International. Testing disinfentants against Pseudomonas aeruginosa. Vol. I, Chap 6. 17th Edition: AOAC; 2002. Official methods 991.49.
  • Hoffman RV. Organic Chemistry: An intermediate text. Hoboken (NJ): Wiley-Interscience; 2004.
  • Newmark RA, Runge ML, Chermack JA. 13C-NMR sequence analysis of polyesters from pentaerythritol and caprolactone. J Polym Sci Polym Chem Ed. 1981; 19:1329–1336.
  • Zoetebier B, Sohrabi A, Lou B, et al. PEG stabilized DNA – poly(ferrocenylsilane) polyplexes for gene delivery. Chem Commun (Camb)). 2016;52:7707–7710.
  • Zhang M, Liu H, Shao W, et al. Synthesis and properties of multicleavable amphiphilic dendritic comlike and toothbrushlike copolymers comprising alternating PEG and PCL grafts. Macromolecules. 2013;46:1325–1336.
  • In’t Veld PJA, Velner EM, van de Witte P, et al. Melt block copolymerization of ε-caprolactone and L-lactide. J Polym Sci A Polym Chem. 1997;35:219–226.
  • Zhang XB, Zhang XF, Bernaerts G, et al. The texture of catalytically grown coil-shaped carbon nanotubes. Europhys Lett. 1994;27:141–146.
  • Dresselhaus MS, Dresselhaus G, Pimienta MA, et al. Raman Scattering in Carbon Materials. In: Pelletier MJ, editor. Analytical Applications of Raman Spectroscopy. Malden (MA): Wiley-Blackwell; 1999. p. 367–431.
  • Dresselhaus MS, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes. Phys Rep. 2005;409:47–99.
  • Aydin M. Density functional theory studies on covalent functionalization of single-walled carbon nanotubes with benzenesulfonic acid. Vib Spectrosc. 2013;65:84–93.
  • Asari @, Mansor NB, Tessonnier J-P, Rinaldi A, et al. Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups. Sains Malays. 2012;41:603–609.
  • AAnalyzer®:A Peak-Fitting Program For Photoemission Data. Available from: http://rdataa.com/aanalyzer/aanaHome.htm.
  • Beamson G, High BD. Resolution XPS of organic polymers: the Scienta ESCA300 database. Chichester (UK): Wiley; 1992.
  • Linert W, Lukovits I. Aromaticity of carbon nanotubes. J Chem Inf Model. 2007;47:887–890.
  • Wingrove AS, Caret RL. Organic chemistry. Ciudad de México (México): Harla; 1984.
  • Kakade B, Patil S, Sathe B, et al. Near-complete phase transfer of single-wall carbon nanotubes by covalent functionalization. J Chem Sci. 2008;120:599–606.
  • Wunderlich B, Mehta A. Macromolecular nucleation. J Polym Sci Polym Phys Ed. 1974;12:255–263.
  • Katime I, Cesteros C. Química Física Macromolecular II. Disoluciones y Estado Sólido. Bilbao (Spain): Servicio Editorial de la Universidad del País Vasco; 2002.
  • Jenkins MJ, Harrison KL. The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym Adv Technol. 2006;17:474–478.
  • Ruelle B, Peeterbroeck S, Bittencourt C, et al. Semi-crystalline polymer/carbon nanotube composites: effect of nanotube surface-functionalization and polymer coating on electrical and thermal properties. React Funct Polym. 2012;72:383–392.
  • Sanchez-Garcia MD, Lagaron JM, Hoa SV. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol. 2010;70:1095–1105.
  • Nielsen LC, Landel RF. Mechanical properties of polymers and composites. New York (NY): Marcel Dekker; 1994.
  • Terzopoulou Z, Bikiaris DN, Triantafyllidis KS, et al. Mechanical, thermal and decomposition behavior of poly(ε-caprolactone) nanocomposites with clay-supported carbon nanotube hybrids. Thermochim Acta. 2016;642:67–80.
  • Wang F, Bronich TK, Kabanov AV, et al. Synthesis and evaluation of a star amphiphilic block copolymer from poly(ε-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chem. 2005;16:397–405.
  • Huang M-H, Li S, Coudane J, et al. Synthesis and characterization of block copolymers of ε-caprolactone and DL-Lactide initiated by ethylene glycol or poly(ethylene glycol). Macromol Chem Phys. 2003;204:1994–2001.
  • Shuai X, Merdan T, Unger F, et al. Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: Synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules. 2003;36:5751–5759.
  • Diario Oficial de la Federación (DOF). Oficial Mexican Standard: General methods for analysis – Antimicrobial activity determination to germicidal products. DOF 1999; NMX-BB-040-SCFI-1999.
  • Nalawade TM, Bhat K, Sogi SHP. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms. J Int Soc Prevent Communit Dent. 2015;5:114–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.