242
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of in vitro cytotoxicity of superparamagnetic poly(thioether-ester) nanoparticles on erythrocytes, non-tumor (NIH3T3), tumor (HeLa) cells and hyperthermia studies

ORCID Icon, ORCID Icon, , , , , , , ORCID Icon & show all
Pages 1935-1948 | Received 26 Oct 2018, Accepted 25 Dec 2018, Published online: 22 Jan 2019

References

  • Zhao D, Zeng X, Xia Q. Inductive heat property of Fe3O4 nanoparticles in AC magnetic field for local hyperthermia. Rare Met. 2006;25:621–625.
  • Zheng W, Gao F, Gu H. Magnetic polymer nanospheres with high and uniform magnetite content. J Magn Magn Mater. 2005;288:403–410.
  • Shi J, Yu X, Wang L, et al. Biomaterials PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials 2013;34:9666–9677.
  • Zhao X, Zhao H, Yuan H, et al. Multifunctional superparamagnetic Fe3O4@SiO2 core/shell nanoparticles: Design and application for cell imaging. J Biomed Nanotechnol. 2014;10:262–270.
  • Dorniani D, Hussein MZB, Kura AU, et al. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomedicine. 2012;7:5745–5756.
  • Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.
  • Sahoo B, Devi KSP, Banerjee R, et al. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces. 2013;5:3884–3893.
  • Lattuada M, Hatton TA. Functionalization of monodisperse magnetic nanoparticles functionalization of monodisperse magnetic nanoparticles. Langmuir 2007;23:2158–2168.
  • Ferreira GR, Segura T, de Souza FG, et al. Synthesis of poly(vinyl acetate)-based magnetic polymer microparticles. Eur Polym J. 2012;48:2050–2069.
  • Feuser PE, Bubniak LDS, Silva MCDS, et al. Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells. Eur Polym J. 2015;68:355–365.
  • Hauser AK, Wydra RJ, Stocke NA, et al. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release. 2015;219:76–94.
  • Dave SR, Gao X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery : a versatile and evolving technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:583–609.
  • Macdonald C, Friedman G, Alamia J, et al. Time-varied magnetic field enhances transport of magnetic nanoparticles in viscous gel. Nanomedicine (Lond). 2010;5:65–76.
  • Saiyed ZM, Gandhi NH, Nair MPN. Magnetic nanoformulation of azidothymidine 5’-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine. 2010;5:157–166.
  • Chen S, Chen M, Xiong F, et al. Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro. Ijn. 2016;11:4413–4422.
  • Zhang R, Wang X, Wu C, et al. Synergistic enhancement effect of magnetic nanoparticles on anticancer drug accumulation in cancer cells. Nanotechnology 2006;17:3622–3626.
  • Shapiro B. NIH public access. J Magn Magn Mater. 2013;6:1–13.
  • Basel MT, Balivada S, Wang H, et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine. 2012;7:297–306.
  • Abulateefeh SR, Aylott JW, Chan WC, et al. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci. 2011;11:1722–1734.
  • Meenach SA, Shapiro JM, Hilt JZ, et al. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J Biomater Sci Polym Ed. 2013;24:1112–1126.
  • Rao W, Deng Z-S, Liu J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng. 2010;38:101–116.
  • Xie X, Liu R, Xu Y, et al. In vitro hyperthermia studied in a continuous manner using electric impedance sensing. RSC Adv. 2015;5:62007–62016.
  • Muela A, Muñoz D, Martín-Rodríguez R, et al. Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. J Phys Chem C. 2016;120:24437–24448.
  • Silva AC, Oliveira TR, Mamani JB, et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine. 2011;6:591–603.
  • Cavaliere R, Ciocatto EC, Giovanella BC, et al. Selective heat sensitivity of cancer cells. Cancer 1967;20:1–6.
  • Yan K, Li P, Zhu H, et al. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment. RSC Adv. 2013;3:10598.
  • Teo P, Wang X, Zhang J, et al. LyP-1-conjugated Fe3O4nanoparticles suppress tumor growth by magnetic induction hyperthermia. J Biomater Sci Polym Ed. 2018;29:181–194.
  • Giustini AJ, Petryk AA, Cassim SA, et al. Magnetıc nanoparticle hyperthermia in cancer treatment. Nano Life. 2013;1:1–23.
  • Van Der Zee J. Review Heating the patient : a promising approach? Ann Oncol. 2002;13:1173–1184.
  • Tang KS, Hashmi SM, Shapiro EM. The effect of cryoprotection on the use of PLGA encapsulated iron oxide nanoparticles for magnetic cell labeling. Nanotechnology 2013;24:125101.
  • Nowicka AM, Kowalczyk A, Jarzebinska A, et al. Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Biomacromolecules 2013;14:828–833.
  • Qiu Y, Tong S, Zhang L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat Comms. 2017;8:1–10.
  • Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol. 2011;45:1–16.
  • Sasaki T, Iwasaki N, Kohno K, et al. Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res A. 2008;86:969–978.
  • Thorat ND, Bohara RA, Noor MR, et al. Effective cancer theranostics with polymer encapsulated superparamagnetic nanoparticles: combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater Sci Eng. 2017;3:1332–1340.
  • Machado TO, Sayer C, Araujo PHH. Thiol-ene polymerisation: a promising technique to obtain novel biomaterials. Eur Polym J. 2017;86:200–215.
  • Cardoso PB, Machado TO, Feuser PE, et al. Biocompatible polymeric nanoparticles from castor oil derivatives via thiol-ene miniemulsion polymerization. Eur J Lipid Sci Technol. 2017;1700212:1–8.
  • Hoelscher F, Machado TO, de Oliveira D, et al. Enzymatically catalyzed degradation of poly (thioether-ester) nanoparticles. Polym Degrad Stab. 2018;156:211–217.
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–146.
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010;31:3657–3666.
  • Moghimi SM, Hunter A. C, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.
  • Harush-Frenkel O, Rozentur E, Benita S, et al. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 2008;9:435–443.
  • Lazzari S, Moscatelli D, Codari F, et al. Colloidal stability of polymeric nanoparticles in biological fluids. J. Nanoparticle Res. 2012;14:920.
  • Prijic S, Scancar J, Romih R, et al. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J Membr Biol. 2010;236:167–179.
  • Feuser PE, Gaspar PC, Ricci J, et al. Synthesis and characterization of poly(methyl methacrylate) pmma and evaluation of cytotoxicity for biomedical application. Macromol Symp. 2014;343:65–69.
  • Sun HW, Zhang LY, Zhu XJ, et al. Magnetic poly(PEGMA-MAA) nanoparticles: Photochemical preparation and potential application in drug delivery. J Biomater Sci Polym Ed. 2009;20:1675–1686.
  • Michał W, Ewa D, Tomasz C. Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles. Colloid Polym Sci. 2015;293:1561–1568.
  • Cardoso PB, Machado TO, Feuser PE, et al. Biocompatible polymeric nanoparticles from castor oil derivatives via thiol-ene miniemulsion polymerization. Eur J Lipid Sci Technol. 2018;120:1–8.
  • Landfester K, Ram Rez LP. Encapsulated magnetite particles for biomedical application. J Phys: Condens Matter. 2003;15:S1345–S1361.
  • Shete PB, Patil RM, Thorat ND, et al. Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci. 2014;288:149–157.
  • Zhan X, Yi Q, Cai S, et al. Polymer-entanglement-driven coassembly of hybrid superparamagnetic nanoparticles: tunable structures and flexible functionalization. J Colloid Interface Sci. 2017;508:263–273.
  • Soares PIP, Laia CAT, Carvalho A, et al. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl Surf Sci. 2016;383:240–247.
  • Chandrasekharan P, Maity D, Yong CX, et al. Vitamin E (d-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 2011;32:5663–5672.
  • Mody VV, Cox A, Shah S, et al. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4:385–392.
  • Kaur P, Aliru ML, Chadha AS, et al. Hyperthermia using nanoparticles – Promises and pitfalls. Int J Hyperthermia. 2017;32:76–88.
  • Hergt R, Dutz S. Polityka energetyczna pa??stwa do 2030 roku. Prz Elektrotechniczny. 2009;85:261–267.
  • Périgo EA, Hemery G, Sandre O, et al. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015;2:041302.
  • Espinosa A, Kolosnjaj-Tabi J, Abou-Hassan A, et al. Magnetic (Hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv Funct Mater. 2018;28:1–16.
  • Feuser PE, Jacques AV, Arévalo JMC, et al. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis. J Nanoparticle Res. 2016;18:104.
  • Fornaguera C, Calderó G, Mitjans M, et al. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale 2015;7:6045–6058.
  • Asín L, Ibarra MR, Tres A, et al. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm Res. 2012;29:1319–1327.
  • Haghniaz R, Angeles L, Umrani R, et al. Hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3 nanoparticles: in vivo studies. Int J Nanomedicine. 2016;11:1779–1791.
  • Patil RM, Shete PB, Thorat ND, et al. Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Adv. 2014;4:4515.
  • Bohara RA, Thorat ND, Chaurasia AK, et al. Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co-Zn ferrite nanoparticles. RSC Adv. 2015;5:47225–47234.
  • Mantso T, Vasil S, Anestopoulo I, et al. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma. Sci Rep. 2018;8:1–16.
  • Hedayatnasab Z, Abnisa F, Daud WMAW. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–196.
  • Buyukhatipoglu K, Clyne AM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res. 2011;96A:186–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.