401
Views
6
CrossRef citations to date
0
Altmetric
Articles

Critical-size alveolar defect treatment via TGF-ß3 and BMP-2 releasing hybrid constructs

, , , , , , , , , & show all
Pages 415-436 | Received 21 Nov 2018, Accepted 15 Jan 2019, Published online: 26 Feb 2019

References

  • Miloro M, Peterson LJ. Peterson's principles of oral and maxillofacial surgery. USA: People's Medical Publishing House; 2012.
  • Khan MSSM, Liu X, Xu S, et al. Current concept in alveolar cleft management. Bangabandhu Sheikh Mujib Med Univ J. 2017;10:195–203. doi: 10.3329/bsmmuj.v10i4.34258
  • Derijcke A, Eerens A, Carels C. The incidence of oral clefts: a review. Br J Oral Maxillofac Surg. 1996;34:488–494.
  • Amanat N, Langdon JD. Secondary alveolar bone grafting in clefts of the lip and palate. J Craniomaxillofac Surg. 1991;19:7–14.
  • Vrotsos JA, Parashis AO, Theofanatos GD, et al. Prevalence and distribution of bone defects in moderate and advanced adult periodontitis. J Clin Periodontol. 1999;26:44–48.
  • Shkoukani MA, Lawrence LA, Liebertz DJ, et al. Cleft palate: a clinical review. Birth Defect Res C. 2014;102:333–342.
  • Rychlik D, Wojcicki P. Bone graft healing in alveolar osteoplasty in patients with unilateral lip, alveolar process, and palate clefts. J Craniofac Surg. 2012;23:118–123.
  • Sato Y, Grayson BH, Garfinkle JS, et al. Success rate of gingivoperiosteoplasty with and without secondary bone grafts compared with secondary alveolar bone grafts alone. Plast Reconstr Surg. 2008;121:1356–1367. discussion 1368–9.
  • Re M. Bone and bone graft healing. Oral Maxillofac Surg Clin North Am. 2007;19:455–466.
  • Touzet S, Ferri J, Wojcik T, et al. Complications of Calvarial Bone Harvesting for Maxillofacial Reconstructions. J Craniofac Surg. 2011;22:178–181.
  • Sudhakar KNVMR, Singh V. Evaluation of donor site morbidity associated with iliac crest bone harvest in oral and maxillofacial reconstructive surgery. J Clin Diagn Res. 2017;11:ZC28–ZC33..
  • Nodarian T, Sariali E, Khiami F, et al. Iliac crest bone graft harvesting complications: a case of liver herniation. Orthop Traumatol Surg Res. 2010;96:593–596.
  • Clarke A, Flowers MJ, Davies AG, et al. Morbidity associated with anterior iliac crest bone graft harvesting in children undergoing orthopaedic surgery: a prospective review. J Child Orthop. 2015;9:411–416.
  • Khojasteh A, Kheiri L, Motamedian SR, et al. Regenerative medicine in the treatment of alveolar cleft defect: a systematic review of the literature. J Craniomaxillofac Surg. 2015;43:1608–1613.
  • Korn P, Schulz MC, Range U, et al. Efficacy of tissue engineered bone grafts containing mesenchymal stromal cells for cleft alveolar osteoplasty in a rat model. J Craniomaxillofac Surg. 2014;42:1277–1285.
  • Raposo-Amaral CEBD, Almeida AB, Jorgetti V, et al. Is bone transplantation the gold standard for repair of alveolar bone defects? J Tissue Eng. 2014;5:16.
  • Jiawen SJZ, Jiewen D, Dedong Y, et al. Osteogenic differentiation of human amniotic epithelial cells and its application in alveolar defect restoration. Stem Cells Transl Med. 2014;3:1504–1513.
  • Sanchez-Duffhues G, Hiepen C, Knaus P, et al. Bone morphogenetic protein signaling in bone homeostasis. Bone 2015;80:43–59.
  • He TC. Distinct osteogenic activity of BMPs and their orthopaedic applications. J Musculoskelet Neuronal Interact. 2005;5:363–366.
  • Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005.
  • Choi SH, Kim CK, Cho KS, et al. Effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J Periodontol. 2002;73:63–72.
  • Zhang H, Sucato DJ, Welch RD. Recombinant human bone morphogenic protein-2-enhanced anterior spine fusion without bone encroachment into the spinal canal: a histomorphometric study in a thoracoscopically instrumented porcine model. Spine. 2005;30:512–518.
  • Vural ACOS, Korkusuz P, Yar Sağlam AS, et al. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2017;45:544–550.
  • Fahmy RAMN, Soliman S, Nouh SR, et al. Acceleration of alveolar ridge augmentation using a low dose of recombinant human bone morphogenetic protein-2 loaded on a resorbable bioactive ceramic. J Oral Maxillofac Surg. 2015;73:2257–2272.
  • Hassan AHHK, Murshid ZA, Alhadlaq A, et al. Controlled release of injectable liposomal in situ gel loaded with recombinant human bone morphogenetic protein-2 for the repair of alveolar bone clefts in rabbits. J Liposome Res. 2016;26:148–155.
  • McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31:729–734.
  • Carragee EJ, Mitsunaga KA, Hurwitz EL, et al. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J. 2011;11:511–516.
  • Woo EJ. Recombinant human bone morphogenetic protein-2: adverse events reported to the Manufacturer and User Facility Device Experience database. Spine J. 2012;12:894–899.
  • Epstein NE. Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg Neurol Int. 2013;4:343–352.
  • James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22:284–297.
  • N, Howles PDP. Transforming growth factor β3: pharmacological properties and physiological functions. Clin Immunol Newslett. 1997;17:109–117.
  • Iwata J, Parada C, Chai Y. The mechanism of TGF-beta signaling during palate development. Oral Dis. 2011;17:733–744.
  • Brunet CL, Sharpe PM, Ferguson MW. Inhibition of TGF-beta 3 (but not TGF-beta 1 or TGF-beta 2) activity prevents normal mouse embryonic palate fusion. Int J Dev Biol. 1995;39:345–355.
  • Ozturk FLY, Zhu X, Guda C, et al. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice. BMC Genomics. 2013;14:113..
  • Lidral ACRP, Basart AM, Doetschman T, et al. Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. Am J Hum Genet. 1998;63:557–568.
  • Deng MMT, Hou T, Luo K, et al. TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration. Stem Cell Res Ther. 2017;8:258. doi: 10.1186/s13287-017-0693-0
  • Smith EL, KJ, Gothard D, Roberts CA, et al. Evaluation of skeletal tissue repair, part 2: enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model. Acta Biomater. 2014;10:4197–4205.
  • Sang YZW, Yan Y, Liu Y, et al. Study of differential effects of TGF-beta3/BMP2 on chondrogenesis in MSC cells by gene microarray data analysis. Mol Cell Biochem. 2014;385:191–198.
  • Lin CYCY, Li KC, Lu CH, et al. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials. 2013;34:9401–9412.
  • Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA. 1979;76:1828–1832.
  • Aydin HM, Korkusuz P, Vargel İ, et al. A 6-month in vivo study of polymer/mesenchymal stem cell constructs for cranial defects. J Bioact Compat Polym. 2011;26:207–221.
  • Simmons CA, Alsberg E, Hsiong S, et al. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone. 2004;35:562–569.
  • Patel ZS, Yamamoto M, Ueda H, et al. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008;4:1126–1138.
  • Bigi A, Cojazzi G, Panzavolta S, et al. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials. 2001;22:763–768.
  • Rai B, Teoh SH, Hutmacher DW, et al. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26:3739–3748.
  • Nguyen PD, Lin CD, Allori AC, et al. Establishment of a critical-sized alveolar defect in the rat: a model for human gingivoperiosteoplasty. Plast Reconstr Surg. 2009;123:817–825.
  • Mostafa NZ, Doschak MR, Major PW, et al. Reliable critical sized defect rodent model for cleft palate research. J Craniomaxillofac Surg. 2014;42:1840–1846.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402–408.
  • Lu M, Rabie AB. Quantitative assessment of early healing of intramembranous and endochondral autogenous bone grafts using micro-computed tomography and Q-win image analyzer. Int J Oral Maxillofac Surg. 2004;33:369–376.
  • Petrie Aronin CE, Sadik KW, Lay AL. Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res. 2009;89:632–641.
  • Pişkin HMAYYTKAEHRME. Interaction of osteoblasts with macroporous scaffolds made of PLLA/PCL blends modified with collagen and hydroxyapatite. Adv Biomater. 2009;11:B83–B88. doi. 10.1002/adem.200900030
  • Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet. 2003;19:458–466.
  • van Straalen JP, Sanders E, Prummel MF, et al. Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta. 1991;201:27–33.
  • Rutkovskiy A, Stenslokken KO, Vaage IJ. Osteoblast differentiation at a glance. Med Sci Monit Basic Res. 2016;22:95–106.
  • Neumann PM, Zur B, Ehrenreich Y. Gelatin-based sprayable foam as a skin substitute. J Biomed Mater Res. 1981;15:9–18. Jan
  • Fukunaka Y, Iwanaga K, Morimoto K, et al. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J Control Release. 2002;80:333–343.
  • Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12:77–88.
  • Ogino SMN, Sakamoto M, Jinno C, et al. Efficacy of gelatin gel sheets sustaining epidermal growth factor for murine skin defects. J Surg Res 2106. 2016;201:446–454.
  • Tanaka A, Nagate T, Matsuda H. Acceleration of wound healing by gelatin film dressings with epidermal growth factor. J Vet Med Sci. 2005;67:909–913.
  • Ahrens LAJ, Vonwil D, Christensen J, et al. Gelatin device for the delivery of growth factors involved in endochondral ossification. PLoS One. 2017;12:e0175095.
  • Gordon JAR, Tye CE, Sampaio AV, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 2007;41:462–473.
  • Malaval L, Wade-Guéye NM, Boudiffa M, et al. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med. 2008;205:1145–1153.
  • Delany AM, Kalajzic I, Bradshaw AD, et al. Osteonectin-null mutation compromises osteoblast formation, maturation, and survival. Endocrinology 2003;144:2588–2596.
  • Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Research. 2016;4:16009.
  • Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–765.
  • Gomez B, Jr., Ardakani S, Ju J, et al. Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem. 1995;41:1560–1566.
  • Nguyen PD, Lin CD, Allori AC, et al. Scaffold-based rhBMP-2 therapy in a rat alveolar defect model: implications for human gingivoperiosteoplasty. Plast Reconstr Surg. 2009;124:1829–1839.
  • Liang CZLH, Tao YQ, Peng LH, et al. Dual release of dexamethasone and TGF-β3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater. 2013;9:9423–9433.
  • Gupta MS, Cooper ES, Nicoll SB. Transforming growth factor-beta 3 stimulates cartilage matrix elaboration by human marrow-derived stromal cells encapsulated in photocrosslinked carboxymethylcellulose hydrogels: potential for nucleus pulposus replacement. Tissue Eng Part A. 2011;17:2903–2910.
  • Shen B, Wei A, Tao H, et al. BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng Part A. 2009;15:1311–1320.
  • Bian LZD, Tous E, Rai R, et al. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011;32:6425–6434.
  • Tang QOSK, Heliotis M, Tsiridis E, et al. potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther. 2009;9:689–701.
  • Rizk A, Rabie ABM. Human dental pulp stem cells expressing transforming growth factor β3 transgene for cartilage-like tissue engineering. Cytotherapy. 2013;15:712–725.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.