540
Views
31
CrossRef citations to date
0
Altmetric
Articles

Functionalized photosensitive gelatin nanoparticles for drug delivery application

, , , &
Pages 508-525 | Received 29 Sep 2018, Accepted 06 Feb 2019, Published online: 20 Mar 2019

References

  • Allison RR, Downie GH, Cuenca R, et al. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004;1:27–42.
  • Bechet D, Couleaud P, Frochot C, et al. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26:612–621.
  • Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther. 2005;2:91–106.
  • Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60:1627–1637.
  • Agostinis P, Berg K, Cengel K, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61:250–281.
  • Dayem AA, Hossain MK, Lee SB, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18:120–141.
  • Naidoo C, Kruger CA, Abrahamse H. Photodynamic therapy for metastatic melanoma treatment: a review. Technol Cancer Res Treat. 2018;17:1–15.
  • Deda DK, Nanotechnology AK. Light and chemical action: an effective combination to kill cancer cells. J Braz Chem Soc. 2015;26:2448–2470.
  • Hong EJ, Choi DG, Shim MSZ. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6:297–307.
  • Jiang Z, Shao J, Yang T, et al. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy. J Pharm Biomed Anal. 2014;87:98–104.
  • Nunes SMT, Sguilla FS, Tedesco AC. Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz J Med Biol Res. 2004;37:273–284.
  • Soares MV, Oliveira MR, Santos EP, et al. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells. Int J Nanomedicine. 2011;6:227–238.
  • Keyal U, Luo Q, Bhatta AK, et al. Zinc pthalocyanine-loaded chitosan/mPEG-PLA nanoparticles-mediated photodynamic therapy for the treatment of cutaneous squamous cell carcinoma. J Biophotonics. 2018;12:e201800114.
  • Martínez-Ballesta MC, Gil-Izquierdo A, García-Viguera C, et al. Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods. 2018;7:72–101.
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26:64–70.
  • Bonifácio BV, Silva PB, Ramos MA, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15.
  • Zhao F, Yao D, Guo R, et al. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel). 2015;5:2054–2130.
  • Frates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci. 2018;19:1717–1737.
  • Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41:2971–3010.
  • Mahesh AG, Narsireddy A, Rao NM, et al. Designing nanostructured materials for photodynamic therapy: an update. Sci. Adv. Today. 2017;3:25267–25280.
  • Li L, Huh KM. Polymeric nanocarrier systems for photodynamic therapy. Biomater Res. 2014;18:19–33.
  • Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother. 2014;10:321–332.
  • Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine. 2013;8:3071–3090.
  • Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14:1629–1654.
  • Yasmina R, Shaha M, Khan SA, et al. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnol Rev. 2017;6:191–207.
  • Nandhakumar S, Dhanaraju MD, Sundar VD, et al. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(e-caprolactone) nanoparticles. Bull Fac Pharm Cairo Univ. 2017;55:249–258.
  • Wang C, He C, Tong Z, et al. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int J Pharm. 2006;308:160–167.
  • Liu XQ, Picart C. Layer-by-layer assemblies for cancer treatment and diagnosis. Adv Mater Weinheim. 2016;28:1295–1301.
  • Lin QK, Hou Y, Tang J, et al. Anti-CD34 antibody functionalized swollen polymeric coating for endothelial cell rapid selectively capture. Int J Polym Mater Po. 2015;64:99–103.
  • Srivastava S, Kotov NA. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res. 2008;41:1831–1841.
  • Bishop CJ, Liu AL, Lee DS, et al. Layer-by-layer inorganic/polymeric nanoparticles for kinetically controlled multigene delivery. J Biomed Mater Res. 2016;104:707–713.
  • Carvalho JA, Abreu AS, Ferreira VTP, et al. Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J Biomater Sci Polym Ed. 2018;29:1287–1301.
  • Demidova TN, Hamblin MR. Macrophage-targeted photodynamic therapy. Int J Immunopathol Pharmacol. 2004;17:117–126.
  • Azimi B, Nourpanah P, Rabiee M, et al. Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran Biomed J. 2014;18:34–40.
  • Ahsan SM, Rao CM. The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release. Int J Nanomedicine. 2017;12:795–808.
  • Shutava TG, Balkundi SS, Vangala P, et al. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano. 2009;3:1877–1885.
  • Kumari A, Singla R, Guliani A, et al. Nanoencapsulation for drug delivery. Excli J. 2014;13:265–286.
  • Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res. 2002;19:1062–1068.
  • Kaul G, Lee-Parsons C, Amiji M. Poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Eng. 2003;23:1–5.
  • Coester CJ, Langer K, Briesen HV, et al. Gelatin nanoparticles by two step desolvation–a new preparation method. Surface Modifications and cell uptake. J Microencapsul. 2000;17:187–193.
  • Farrugia CA, Groves MJ. The activity of unloaded gelatin nanoparticles on murine melanoma B16-F0 growth in vivo. Anticancer Res. 1999;19:1027–1031.
  • Bajpai A, Choubey J. Release study of sulphamethoxazole controlled by swelling of gelatin nanoparticles drug biopolymer interaction. J Macromol Sci A. 2005;42:253–275.
  • Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–267.
  • Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63–70.
  • Zeng Y, Grandner S, Oliveira CLP, et al. Effect of particle size and debye length on order parameters of colloidal silica suspensions under confinement. Soft Matter. 2011;7:10899–10909.
  • Nyman U, Almén T, Landtman M. Effect of pH, buffer and osmolality of different contrast media on aortic blood pressure in the rabbit. Acta Radiol Diagn (Stockh). 1980;21:679–684.
  • Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44:6287–6305.
  • Graf C, Gao Q, Schütz I, et al. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir. 2012;28:7598–7613.
  • Chanteau B, Fresnais J, Berret JF. Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium. Langmuir. 2009;25:9064–9070.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 2). Trop J Pharm Res. 2013;12:265–273.
  • El-Nahass MM, Zeyada HM, Aziz MS, et al. Structural and optical properties of thermally evaporated zinc phthalocyanine thin films. Opt Mater. 2004;27: 491–498.
  • Senthilarasu S, Sathyamoorthy R, Lalitha S, et al. Thermally evaporated ZnPc thin films—band gap dependence on thickness. Sol Energy Mater Sol Cells. 2004;82:179–186.
  • Sibata CH, Coluss VC, Oleinick NL, et al. Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res. 2000;33:869–880.
  • Allen CM, Sharman WM, Lier JEV. Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines. 2001;05:161–169.
  • Hamblin MR, Chiang LY, Lakshmanan S, et al. Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. Nanotechnol Rev. 2015;4:359–372.
  • Mesquita MQ, Dias CJ, Gamelas S, et al. An insight on the role of photosensitizer nanocarriers for photodynamic therapy. An Acad Bras Ciênc. 2018;90:1101–1130.
  • Debele TA, Peng S, Tsai HC. Drug carrier for photodynamic cancer therapy. Int J Mol Sci. 2015;16:22094–22136.
  • Chauhan A, Mittu B, Chauhan P. Analytical method development and validation: a concise review. J Anal Bioanal Tech. 2015; 6:233–237.
  • Ramos A, Nascimento F, de Souza T, et al. Photochemical and photophysical properties of phthalocyanines modified with optically active alcohols. Molecules. 2015;20:13575–13590.
  • Savolainen J, van der Linden D, Dijkhuizen N, et al. Characterizing the functional dynamics of zinc phthalocyanine from femtoseconds to nanoseconds. J Photoch Photobio A. 2008;196:99–105.
  • Rashba-Step J, Darvari RJ, Shutava T. et al. Surface modification of PROMAXX microparticles. In Proceedings of 33rd Annual Controlled Release Society Meeting, Vienna, Austria. 2006;78–80.
  • Plaetzer K, Krammer B, Berlanda J, et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24:259–268.
  • Hao H, Ma Q, Huang C, et al. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm. 2013;444:77–84.
  • Deda D, Uchoa AF, Caritá E, et al. A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int J Pharm. 2009;376:76–83.
  • Yslas EI, Rivarola V, Durantin EN. Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorg Med Chem. 2005;13:39–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.