800
Views
16
CrossRef citations to date
0
Altmetric
Articles

Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release

, , , , , , & show all
Pages 737-755 | Received 28 Jan 2019, Accepted 01 Apr 2019, Published online: 19 Apr 2019

References

  • Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975;28:721–726.
  • Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot. 1975;28:727–732.
  • Ding T, Zhu C, Yin J-B. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci. 2015;122:92–99.
  • Yang H, Cheng EY, Sharma VK, et al. Dendritic cells with TGF-beta1 and IL-2 differentiate naive CD4+ T cells into alloantigen-specific and allograft protective Foxp3+ regulatory T cells. Transplantation. 2012;93:580–588.
  • Sehgal SN. (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem. 1998;31:335–340.
  • Morath C, Arns W, Schwenger V, et al. Sirolimus in renal transplantation. Nephrol Dial Transplant. 2007;22 Suppl 8:viii61–viii65.
  • Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int. 2001;59:3–16.
  • Othman R, Vladisavljevic GT, Nagy ZK, et al. Encapsulation and controlled release of rapamycin from polycaprolactone nanoparticles prepared by membrane micromixing combined with antisolvent precipitation. Langmuir. 2016;32:10685–10693.
  • Kim MS, Kim JS, Park HJ, et al. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomed. 2011;6:2997–3009.
  • Zhang Z, Xu L, Chen H, et al. Rapamycin-loaded poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. J Pharm Pharmacol. 2014;66:557–563.
  • Simamora P, Alvarez JM, Yalkowsky SH. Solubilization of rapamycin. Int J Pharm. 2001;213:25–29.
  • Falke LL, van Vuuren SH, Kazazi-Hyseni F, et al. Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres. Biomaterials. 2015;42:151–160.
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51.
  • Cohen S, Baño MC, Cima LG, et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater. 1993;13:3–10.
  • Yang S, Leong K-F, Du Z, et al. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002;8:1–11.
  • Chun KW, Yoo HS, Yoon JJ, et al. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function. Biotechnol Prog. 2004;20:1797–1801.
  • Prior S, Gamazo C, Irache JM, et al. Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. Int J Pharmaceut. 2000;196:115–125.
  • P, Fattahi A, Borhan MR, Abidian. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release. Adv Mater. 2013;25:4555–4560.
  • Paudel A, Worku ZA, Meeus J, et al. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453:253–284.
  • Sajeesh P, Sen AK. Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics. 2014;17:1–52.
  • Gañán-Calvo AM, Montanero JM, Martín-Banderas L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing. Adv Drug Deliv Rev. 2013;65:1447–1469.
  • Keohane K, Brennan D, Galvin P, et al. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. Int J Pharm. 2014;467:60–69.
  • Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006;24:299–304.
  • Rafati A, Boussahel A, Shakesheff KM, et al. Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. J Control Release. 2012;162:321–329.
  • Ambrosch K, Manhardt M, Loth T, et al. Open porous microscaffolds for cellular and tissue engineering by lipid templating. Acta Biomaterialia. 2012;8:1303–1315.
  • Barkam S, Saraf S, Seal S. Fabricated micro-nano devices for in vivo and in vitro biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:544–568.
  • Martin Y, Eldardiri M, Lawrence-Watt DJ, et al. Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev. 2011;17:71–80.
  • Chen X-G, Liu C-S, Liu C-G, et al. Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J. 2006;27:269–274.
  • Mooney DJ, Vandenburgh H. Cell delivery mechanisms for tissue repair. Cell Stem Cell. 2008;2:205–213.
  • Mamidi MK, Dutta S, Bhonde R, et al. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: which way to go? Med Hypotheses. 2014;83:787–791.
  • Takeuchi S, Garstecki P, Weibel DB, et al. An axisymmetric flow-focusing microfluidic device. Adv Mater.. 2005;17:1067–1072.
  • Yu X, Takayama T, Goel SA, et al. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. J Control Release. 2014;191:47–53.
  • Li M, Xu X, Jia Z, et al. Rapamycin-loaded nanoporous [small alpha]-Fe2O3 as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications. J Mater Chem B. 2017;5:1182–1194.
  • Fan YL, Hou HW, Tay HM, et al. Preservation of anticancer and immunosuppressive properties of rapamycin achieved through controlled releasing particles. AAPS PharmSciTech. 2017;18:2648–2657.
  • Fröhlich M, Maličev E, Gorenšek M, et al. Evaluation of rabbit auricular chondrocyte isolation and growth parameters in cell culture. Cell Biol Int. 2007;31:620–625.
  • Xue J, Feng B, Zheng R, et al. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials. 2013;34:2624–2631.
  • Pettersson S, Wettero J, Tengvall P, et al. Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation. Biomed Mater. 2011;6:065001.
  • Kim MR, Lee S, Park J-K, et al. Golf ball-shaped PLGA microparticles with internal pores fabricated by simple O/W emulsion. Chem Commun (Camb). 2010;46:7433–7435.
  • Lee JH, Lee C-S, Cho KY. Enhanced Cell Adhesion to the Dimpled Surfaces of Golf-Ball-Shaped Microparticles. ACS Appl Mater Interfaces. 2014;6:16493–16497.
  • Sander EA, Alb AM, Nauman EA, et al. Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds. J Biomed Mater Res A. 2004;70:506–513.
  • Choi J, Jang BN, Park BJ, et al. Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid). Langmuir. 2014;30:10098–10106.
  • Lisa Lao L, Venkatraman S, Peppas NA. A novel model and experimental analysis of hydrophilic and hydrophobic agent release from biodegradable polymers, 2009.
  • Brugarolas T, Tu F, Lee D. Directed assembly of particles using microfluidic droplets and bubbles. Soft Matter. 2013;9:9046–9058.
  • Nabavi SA, Vladisavljević GT, Gu S, et al. Double emulsion production in glass capillary microfluidic device: Parametric investigation of droplet generation behaviour. Chem Eng Sci. 2015;130:183–196.
  • Berkland C, Kipper MJ, Narasimhan B, et al. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release. 2004;94:129–141.
  • Siepmann J, Faisant N, Akiki J, et al. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release. 2004;96:123–134.
  • Bee S-L, Hamid ZAA, Mariatti M, et al. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres. A review. Polym Rev. 2018; 1–42.
  • Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–895.
  • Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11:21.
  • Brittberg M. Arthroscopic autologous chondrocyte implantation for the treatment of cartilage defects. In Doral MN, Karlsson J, editors, Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation, Berlin, Heidelberg: Springer, 2015. 1857–1866.
  • Wang Y, Bian Y-Z, Wu Q, et al. Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials. 2008;29:2858–2868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.