2,837
Views
83
CrossRef citations to date
0
Altmetric
Review Articles

Preparation of nanocellulose and its potential in reinforced composites: A review

, , , &
Pages 919-946 | Received 21 Jan 2019, Accepted 17 Apr 2019, Published online: 24 May 2019

References

  • Ng HM, Sin LT, Tee TT. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B. 2015;75:176–200.
  • Lima MMDS, Borsali R. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromol Rapid Commun. 2010;25:771–787.
  • Helbert W, Sugiyama J, Ishihara M, et al. Characterization of native crystalline cellulose in the cell walls of Oomycota. J Biotechnol. 1997;57:29–37.
  • Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A new family of nature‐based materials. Angew Chem Int Ed. 2011;50:5438–5466.
  • Purkait BS, Ray D, Sengupta S, et al. Isolation of cellulose nanoparticles from sesame husk. Ind Eng Chem Res. 2011;50:871–876.
  • Satyamurthy P, Jain P, Balasubramanya RH, et al. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym. 2011;83:122–129.
  • Zhu JY, Sabo R, Luo X. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 2011;13:1339–1344.
  • Deepa B, Abraham E, Cherian BM, et al. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol. 2011;102:1988–1997.
  • Kaushik A, Singh M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Res. 2011;346:76–85.
  • Shankar S, Rhim JW. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr Polym. 2016;135:18–26.
  • Kargarzadeh H, Mariano M, Huang J, et al. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer. 2017;132:368–393.
  • Iwamoto S, Nakagaito AN, Yano H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A. 2005;81:1109–1112.
  • Yano H, Sugiyama J, Nakagaito A, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater. 2005;17:153–155.
  • Shimazaki Y, Miyazaki Y, Takezawa Y, et al. Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromol. 2007;8:2976–2978.
  • Nogi M, Handa K, Nakagaito AN, et al. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett. 2005;87:1587–1592.
  • Oksman K, Mathew AP, Bondeson D, et al. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Comp Sci Technol. 2006; 66:2776–2784.
  • Bondeson D, Oksman K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Comp Part A Appl Sci Manufact. 2007;38:2486–2492.
  • Bondeson D, Oksman K. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Comp Interf. 2007;14:617–630.
  • Bondeson D, Syre P, Niska KO. All cellulose nanocomposites produced by extrusion. J Biobased Mat Bioenergy. 2015;1:367–371.
  • Jonoobi M, Harun J, Mathew AP, et al. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Comp Sci Technol. 2010;70:1742–1747.
  • Jonoobi M, Mathew AP, Abdi MM, et al. A comparison of modified and unmodified cellulose nanofiber reinforced Polylactic Acid (PLA) prepared by twin screw extrusion. J Polym Environ. 2012;20:991–997.
  • Hasani M, Cranston ED, Westman G, et al. Correction: Cationic surface functionalization of cellulose nanocrystals. Soft Matter. 2008;4:2238–2244.
  • Zhou Q, Brumer H, Teeri TT. Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-Poly(ethylene glycol)-Polystyrene triblock copolymer. Macromolecules. 2009;42:5430–5432.
  • Berlioz S, Molina-Boisseau S, Nishiyama Y, et al. Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules. 2009;10:2144–2151.
  • Azzam F, Heux L, Putaux JL, et al. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules. 2010;11:3652–3659.
  • Rueda L, D’Arlas BF, Zhou Q, et al. Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Comp Sci Technol. 2011;71:1953–1960.
  • Lee KY, Tang M, Williams CK, et al. Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Comp Sci Technol. 2012;72:1646–1650.
  • Eyholzer C, Tingaut P, Zimmermann T, et al. Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ. 2012;20:1052–1062.
  • Dai H, Ou S, Huang Y, et al. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose. 2018;25:1–14.
  • Wang QQ, Zhu JY, Verrill SP, et al. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose. 2012;19:2033–2047.
  • Du HS, Liu C, Mu XD, et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose. 2016;23:2389–2407.
  • Liu Y, Wang H, Yu G, et al. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym. 2014;110:415–422.
  • Kos T, Anžlovar A, Kunaver M, et al. Fast preparation of nanocrystalline cellulose by microwave-assisted hydrolysis. Cellulose. 2014;21:2579–2585.
  • Karim Z, Afrin S, Husain Q, et al. Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol. 2017;37:355–370.
  • Cui S, Zhang S, Ge S, et al. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Indust Crops Prod. 2016;83:346–352.
  • Satyamurthy P, Vigneshwaran N. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microbial Technol. 2013;52:20–25.
  • Chang PS, Robyt JF. Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-Tetramethyl-1-Piperidine oxoammonium ion. J Carbohydr Chem. 1996;15:819–830.
  • Carlsson DO, Lindh J, Nyholm L, et al. Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. Rsc Adv. 2014;4:52289–52298.
  • Johnson RK, Zink-Sharp A, Glasser WG. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose. 2011;18:1599–1609.
  • Ma H, Hsiao BS. Nanocellulose extracted from defoliation of ginkgo leave. MRS Adv. 2018;3:2077–2088.
  • Mishra SP, Manent A-S, Chabot B, et al. The use of sodium chlorite in post-oxidation of TEMPO-Oxidized Pulp: Effect on pulp characteristics and nanocellulose yield. J Wood Chem Technol. 2012;32:137–148.
  • Leung AC, Hrapovic S, Lam E, et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small. 2011;7:302–305.
  • Oun AA, Rhim JW. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym. 2017;174:484–492.
  • Mascheroni E, Rampazzo R, Ortenzi MA, et al. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate to be used as coating on flexible food-packaging materials. Cellulose. 2016;23:779–793.
  • Oun AA, Rhim JW. Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose. 2018;25:2143–2149.
  • Yang H, Tejado A, Alam N, et al. Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir ACS J Surf Colloids. 2012;28:7834–7842.
  • Yang H, Chen D, van de Ven TGM, et al. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose. 2015;22:1743–1752.
  • Dufresne A, Cavaill□ J-Y, Vignon MR. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci. 1997;64:1185–1194.
  • Li J, Wei X, Wang Q, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym. 2012;90:1609–1613.
  • Zhang L, Tsuzuki T, Wang X. Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose. 2015;22:1729–1741.
  • Pääkkö M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8:1934–1941.
  • Nakagaito AN, Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A. 2004;78:547–552.
  • Bendahou A, Kaddami H, Dufresne A. Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J. 2010;46:609–620.
  • Hu C, Zhao Y, Li K, et al. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. TAPPI J. 2015;9:577–583.
  • Abe K, Shinichiro Iwamoto A, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol. 2007;8:3276–3278.
  • Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose. 2009;16:1017–1023.
  • Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo. Cellulose. 2010;17:271–277.
  • Cherian BM, Leão AL, Souza SFD, et al. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym. 2010;81:720–725.
  • Hamid SBA, Amin MA, Ali ME. Zeolite supported ionic liquid catalyst for the synthesis of nano-cellulose from palm tree biomass. Adv Mater Res. 2014;925:52–56.
  • Kilpeläinen I, Xie HB, King A, et al. Dissolution of wood in ionic liquids. J Agric Food Chem. 2007;55:9142–9148.
  • Tan XY, Sharifah Bee AH, Lai CW. Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy. 2015;81:584–591.
  • Miao J, Yu Y, Jiang Z, et al. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose. 2016;23:1209–1219.
  • Zhao G, Wang F, Lang X, et al. Facile one-pot fabrication of cellulose nanocrystals and enzymatic synthesis of its esterified derivative in mixed ionic liquids. Rsc Adv. 2017;7:27017–27023.
  • Phanthong P, Karnjanakom S, Reubroycharoen P, et al. A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose. 2017;24:2083–2093.
  • AZoccola M, Montarsolo A, Patrucco A, et al. Preparation of nanocellulose: A review. Aatcc J Res. 2014;1:17–23.
  • Nishi Y, Uryu M, Yamanaka S, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci. 1989;24:3141–3145.
  • Feng J, Shi Q, Li W, et al. Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose. 2014;21:4557–4567.
  • Heßler N, Klemm D. Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose. 2009;16:899–910.
  • Dima SO, Panaitescu DM, Orban C, et al. Bacterial nanocellulose from side-streams of Kombucha beverages production: Preparation and physical-chemical properties. Polymers. 2017;9:374–398.
  • Jahanbaani AR, Behzad T, Borhani S, et al. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym.. 2016;17:1438–1448.
  • Kim C-W, Kim D-S, Kang S-Y, et al. Structural studies of electrospun cellulose nanofibers. Polymer. 2006;47:5097–5107.
  • Qin X, Wang H, Wu S. Investigation on structure and thermal properties of electrospun cellulose diacetate nanofibers. Journal of Industrial Textiles. 2013;42:244–255.
  • Ma Z, Kotaki M, Ramakrishna S. Electrospun cellulose nanofiber as affinity membrane. J Membrane Sci. 2005;265:115–123.
  • Wang B, Sain M. Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int. 2007;56:538–546.
  • Haafiz MKM, Hassan A, Khalil HPSA, et al. Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly(lactic acid). Polymer Testing. 2015;48:133–139.
  • Ping Q, Yuan G, GuoFeng W, et al. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. Bioresources. 2010;5:1811–1823.
  • Pandey JK, Lee CS, Ahn SH. Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J Appl Polym Sci. 2010;115:2493–2501.
  • Stark NM, Sabo RC, Matuana LM, et al. Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid). J Renew Mater. 2017;5:410–422.
  • Robles E, Urruzola I, Labidi J, et al. Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Indust Crops Products. 2015;71:44–53.
  • Arjmandi R, Hassan A, Haafiz MKM, et al. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites. Int J Biol Macromol. 2016;82:998–1010.
  • Wu H, Nagarajan S, Zhou L, et al. Synthesis and characterization of cellulose nanocrystal-graft-poly(D-lactide) and its nanocomposite with poly(L-lactide). Polymer. 2016;103:365–375.
  • Luo H, Xiong G, Li Q, et al. Preparation and properties of a novel porous poly(lactic acid) composite reinforced with bacterial cellulose nanowhiskers. Fibers Polym. 2014;15:2591–2596.
  • Zhou CJ, Shi QF, Guo WH, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces. 2013;5:3847–3854.
  • Fortunati E, Armentano I, Zhou Q, et al. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym. 2012;87:1596–1605.
  • Fortunati E, Armentano I, Zhou Q, et al. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degrad Stabil. 2012;97:2027–2036.
  • Jasmani L, Adnan S. Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential. Carbohydr Polym. 2017;161:166–171.
  • Jahan Z, Niazi MBK, Gregersen ØW. Mechanical, thermal and swelling properties of Cellulose Nanocrystals/PVA nanocomposites membranes. J Industr Eng Chem. 2018;57:113–124.
  • Fortunati E, Puglia D, Luzi F, et al. Binary pva bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydr Polym. 2013;97:825–836.
  • Cho MJ, Park BD. Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Industr Eng Chem. 2011;17:36–40.
  • Zhou YM, Fu SY, Zheng LM, et al. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett. 2012;6:794–804.
  • Peresin MS, Habibi Y, Vesterinen AH, et al. Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromol. 2010;11:2471–2477.
  • Rescignano N, Fortunati E, Montesano S, et al. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym. 2014;99:47–58.
  • Enayati MS, Behzad T, Sajkiewicz P, et al. Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106:1111–1120.
  • Kumar A, Negi YS, Choudhary V, et al. Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. 2014;21:3409–3426.
  • Anuj K, Yuvraj SN, Veena C, et al. Fabrication of poly (vinyl alcohol)/ovalbumin/cellulose nanocrystals/nanohydroxyapatite based biocomposite scaffolds. Int J Polymer Mater Polymer Biomater. 2016;65:191–201.
  • Sehaqui H, Zhou Q, Ikkala O, et al. Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol. 2011;12:3638–3644.
  • Heath L, Thielemans W. Cellulose nanowhisker aerogels. Green Chem. 2010;12:1448–1453.
  • Javadi A, Zheng Q, Payen F, et al. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. Acs Appl Mater Interfaces. 2013;5:5969–5975.
  • Mueller S, Sapkota J, Nicharat A, et al. Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. J Appl Polym Sci. 2015;132:41740.
  • Zhai T, Zheng Q, Cai Z, et al. Poly(vinyl alcohol)/Cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane. ACS Appl Mater Interfaces. 2015;7:7436–7444.
  • Zhai T, Zheng Q, Cai Z, et al. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr Polym. 2016;148:300–308.
  • Liu A, Medina L, Berglund LA. High-strength nanocomposite aerogels of ternary composition: Poly(vinyl alcohol), clay, and cellulose nanofibrils. ACS Appl Mater Interfaces. 2017;9:6453–6461.
  • Bamboo fiber-reinforced polypropylene composites: Crystallization and interfacial morphology. J Appl Polymer Sci. 1997;64:1267–1273.
  • Manchado MAL, Blagiotti J, Torre L, et al. Effects of reinforcing fibers on the crystallization of polypropylene. Polym Eng Sci.. 2010;40:2194–2204.
  • Yang HS, Gardner DJ, Nader JW. Characteristic impact resistance model analysis of cellulose nanofibril-filled polypropylene composites. Compos Part A: Appl Sci Manufacturing. 2011;42:2028–2035.
  • Bahar E, Ucar N, Onen A, et al. Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci. 2012;125:2882–2889.
  • Peng Y, Gallegos SA, Gardner DJ, et al. Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos. 2016;37:782–793.
  • Ashori A, Nourbakhsh A. Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites. Compos Part B: Eng. 2010;41:578–581.
  • Agarwal UP, Sabo R, Reiner RS, et al. Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal Raman microscopy. Appl Spectrosc. 2012;66:750–775.
  • Lee SH, Teramoto Y, Endo T. Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos Part A Appl Sci Manufact. 2011;42:151–156.
  • Wang X, Bai HL, Zhang LP. The effects of nanocrystaline cellulose on polysulfone hollow-fiber ultrafiltration membrane. AMR.. 2012;528:210–213.
  • Bai H, Zhou Y, Zhang L. Morphology and mechanical properties of a new nanocrystalline cellulose/polysulfone composite membrane. Adv Polymer Technol. 2014;34:21471.
  • Noorani S, Simonsen J, Atre S. Nano-enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals. Cellulose. 2007;14:577–584.
  • Gao Y, Li B, Zhong L, et al. Effect of nano-amphiphilic cellulose as a modifier to PSf composite membranes. Vacuum. 2014;107:199–203.
  • Ding Z, Liu X, Liu Y, et al. Enhancing the compatibility, hydrophilicity and mechanical properties of polysulfone ultrafiltration membranes with lignocellulose nanofibrils. Polymers. 2016;8:349–355.
  • Jabbar A, Militký J, Wiener J, et al. Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Compos Struct. 2017;161:340–349.
  • Emami Z, Meng Q, Pircheraghi G, et al. Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose. 2015;22:3161–3176.
  • Barari B, Omrani E, Moghadam AD, et al. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym. 2016;147:282–293.
  • Kuo PY, Barros LA, Yan N, et al. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix. Carbohydr Polym. 2017;177:249–257.
  • Rusli R, Shanmuganathan K, Rowan SJ, et al. Stress transfer in cellulose nanowhisker composites-influence of whisker aspect ratio and surface charge. Biomacromol. 2011;12:1363–1369.
  • Ansari F, Galland S, Johansson M, et al. Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos Part A: Appl Sci Manufact. 2014;63:35–44.
  • Islam MS, Pickering KL, Foreman NJ. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci. 2011;119:3696–3707.
  • Abdelmouleh M, Boufi S, Belgacem MN, et al. Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci. 2005;98:974–984.
  • Siqueira G, Abdillahi H, Brás J, et al. High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose. 2010;17:289–298.
  • Siqueira G, Tapin-Lingua S, Bras J, et al. Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose. 2011;18:57–65.
  • Gao TM, Huang MF, Xie RH, et al. Preparation and Characterization of Nanocrystalline Cellulose/Natural Rubber (NCC/Nr) Composites. AMR.. 2013;712–715:111–114.
  • Cao X, Xu C, Liu Y, et al. Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites. Carbohydrate Polymers. 2013; 92:69–76.
  • Annamalai PK, Dagnon KL, Monemian S, et al. Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals–processing matters. Acs Appl Mater Interfaces. 2014;6:967–976.
  • Chen WJ, Gu J, Xu SH. Exploring nanocrystalline cellulose as a green alternative of carbon black in natural rubber/butadiene rubber/styrene-butadiene rubber blends. Express Polym Lett.. 2014;8:659–668.
  • Kang X, Sun P, Kuga S. Thin cellulose nanofiber from corncob cellulose and Its performance in transparent nanopaper. Acs Sustainable Chem Eng. 2017;5:2529–2534.
  • Liu H, Cui S, Shang S, et al. Properties of rosin-based waterborne polyurethanes/cellulose nanocrystals composites. Carbohydr Polym. 2013;96:510–515.
  • Cao X, Dong H, Li CM. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromol. 2007;8:899–904.
  • Cherian BM, Leão AL, de Souza SF, et al et al. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polymers. 2011;86:1790–1798.
  • Peters SJ, Rushing TS, Landis EN, et al. Nanocellulose and microcellulose fibers for concrete. Transportation Res Record. 2010;2142:25–28.
  • Qua EH, Hornsby PR. Preparation and characterisation of nanocellulose reinforced polyamide-6. Plastics Rubber Compos. 2011;40:300–306.
  • Pu Y, Zhang J, Elder T, et al. Investigation into nanocellulosics versus acacia reinforced acrylic films. Composites Part B. 2007;38:360–366.
  • Spoljaric S, Salminen A, Luong ND, et al. Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose. 2013;20:2991–3005.
  • Lin N, Dufresne A. Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules. 2013;46:5570–5583.
  • Goffin AL, Raquez JM, Duquesne E, et al. Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer. 2011;52:1532–1538.
  • Bellani CF, Pollet E, Hebraud A, et al. Morphological, thermal, and mechanical properties of poly(ε-caprolactone)/poly(ε-caprolactone)-grafted-cellulose nanocrystals mats produced by electrospinning. J Appl Polymer Sci. 2016;133:43445.
  • De Mesquita JP, Donnici CL, Pereira FV. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with Chitosan. Biomacromolecules. 2010;11:473–480.
  • Barud HS, Souza JL, Santos DB, et al. Bacterial cellulose/poly (3-hydroxybutyrate) composite membranes. Carbohydr Polym. 2011;83:1279–1284.
  • Saber-Samandari S, Saber-Samandari S, Kiyazar S, et al. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;86:434–442.
  • Hakkarainen T, Koivuniemi R, Kosonen M, et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release. 2016;244:292–301.
  • Kim J, Kim SW, Park S, et al. Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthcare Mater. 2013;2:1525–1531.
  • Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, et al. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials. 2016;82:208–220.
  • Lydia C, Wright Katja E, Hill David W, et al. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr Polym. 2016;137:191–197.
  • Chinga-Carrasco G, Syverud K. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl.. 2014; 29:423–432.
  • Mikkonen KS, Mathew AP, Pirkkalainen K, et al. Glucomannan composite films with cellulose nanowhiskers. Cellulose. 2010;17:69–81.
  • Wicklein B, Kocjan A, Salazar-Alvarez G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotech.. 2015;10:277–283.
  • Banthia N, Majdzadeh F, Wu J, et al. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement & Concrete Composites. 2014;48:91–97.
  • Zhang S, Sun G, He Y, et al. Preparation, Characterization and Electrochromic Properties of Nanocellulose-based Polyaniline Nanocomposite Films. Acs Appl Mater Interfaces. 2017;9:16426–16434.
  • Wang Z, Tammela P, Zhang P, et al. Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. J Mater Chem A. 2014;2:7711–7716.
  • Qian Y, Xianming K, Yibo M, et al. Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays. Cellulose. 2018;25:6041–6053.
  • Iwamoto S, Kai WH, Isogai T, et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stability. 2010;95:1394–1398.
  • Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules. 2010;11:1696–1700.
  • Isogai T, Saito T, Isogai A. Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose. 2011;18:421–431.
  • Bulota M, Hughes M. Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose. J Mater Sci. 2012;47:5517–5523.
  • Peng K, Wang B, Chen S, et al. Preparation and properties of polystyrene/bacterial cellulose nanocomposites by in situ polymerization. J Macromol Sci Part B. 2011;50:1921–1927.
  • Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, et al. Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose. 2015;22:1201–1226.
  • Zhou C, Wu Q, Yue Y, et al. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci.. 2011;353:116–123.
  • Rueda L, Saralegi A, Fernández-d’Arlas B, et al. In situ polymerization and characterization of elastomeric;polyurethane-cellulose nanocrystal nanocomposites. Cell response;evaluation. Cellulose. 2013;20:1819–1828.
  • Banerjee M, Sain S, Mukhopadhyay A, et al. Surface treatment of cellulose fibers with methylmethacrylate for enhanced properties of in situ polymerized PMMA/cellulose composites. J Appl Polym Sci. 2014;131:9553–9561.
  • Miao C, Hamad WY. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym. 2016;153:549–558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.