1,413
Views
36
CrossRef citations to date
0
Altmetric
Articles

Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film

, , &
Pages 961-982 | Received 13 Feb 2019, Accepted 27 Apr 2019, Published online: 21 May 2019

References

  • Seves A, Testa G, Bonfatti A, Paglia D, et al. Characterization of native cellulose/polyethylene glycol films. Macromol Mater Eng. 2001;286:524–528.
  • Boontheekul T, Kong J, Mooney J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–2465.
  • Thakur S, Sharma B, Verma A, et al. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod. 2018;198:143–159.
  • Wróblewska-Krepsztul J, Rydzkowski T, Michalska-Pozoga I, et al. Review-biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials. 2019;9:404.
  • Taokaew S, Seetabhawang S, Siripong P, et al. Biosynthesis and characterization of nanocellulose-gelatin films. Materials. 2013;6:82–794.
  • Chen YX, Zhou XD, Lin QF, et al. Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose. 2014;21:2679–2693.
  • Stumpf TR, Yang XY, Zhang JC, et al. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C. 2018;82:372–383.
  • Taokaew S, Phisalaphong M. Fabrication of gelatin complexes/bio-nanocellulose nanostructured composite mat. Mater Sci Forum. 2018;936:142–147.
  • Wang J, Wan YZ, Luo HL, et al. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C. 2012;32:536–541.
  • Yan HQ, Chen XQ, Feng MX, et al. Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater Lett. 2017;209:492–496.
  • Chen CC, Deng SW, Yang YN, et al. Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties. Cellulose. 2018;25:5063–5070.
  • Chen CC, Wang YR, Yang YN, et al. High strength gelatin-based nanocomposites reinforced by surfacedeacetylated chitin nanofiber networks. Carbohydr Polym. 2018;195:387–392.
  • Chen CC, Li DG, Abe K, et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose. 2018;25:5089–5097.
  • Pandele AM, Neacsu P, Cimpean A, et al. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration. Appl Surf Sci. 2018;438:2–13.
  • Thakur S, Govender P, Mamo M, et al. Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum. 2017;146:396–408.
  • Naseri N, Deepa B, Mathew AP, et al. Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules. 2016;17:3714–3723.
  • Ahmadi R, Kalbasi A, Oromiehie A, et al. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J Food Eng. 2012;109:745–751.
  • Liu F, Chiou BS, Avena-Bustillos RJ, et al. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloid. 2017;65:1–9.
  • Thomazine M, Carvalho R, Sobral P. Physical properties of gelatin films plasticized by blends of glycerol and sorbitol. J Food Sci. 2005;70:172–176.
  • Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, et al. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact. 2018;23:383–395.
  • Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, et al. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym. 2011;85:548–553.
  • Barud HS, AraúJo AM, Santos DB, et al. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta. 2008;471:61–69.
  • Fan LH, Du YM, Huang RH, et al. Preparation and characterization of alginate/gelatin blend fibers. J Appl Polym Sci. 2005;96:1625–1629.
  • Cacicedo M, León I, Gonzalez J, et al. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf B Biointerfaces. 2016;140:421–429.
  • Xiao CB, Liu HJ, Lu YS, et al. Blend films from sodium alginate and gelatin solutions. J Macromol Sci Pure Appl Chem. 2001;38:317–328.
  • Miao C, Hamad WY. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose. 2013;20:2221–2262.
  • Saarai A, Kasparkova V, Sedlacek T, et al. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels. J Mech Behav Biomed Mater. 2013;18:152–166.
  • Pielesz A, Klimczak M, Bak K. Raman spectroscopy and WAXS method as a tool for analyzing ion-exchange properties of alginate hydrogels. Int J Biol Macromol. 2008;43:438–443.
  • Saravanan M, Rao K. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr Polym. 2010;80:808–816.
  • Ubonrat S, Bruce R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloid. 2010;24:770–775.
  • Panouillé M, Larreta V. Gelation behaviour of gelatin and alginate mixtures. Food Hydrocolloid. 2009;23:1074–1080.
  • Voron´Ko G, Derkach R, Izmailova N. Rheological properties of gels of gelatin with sodium alginate. Russ J Appl Chem. 2002;75:790–794.
  • Yan HQ, Huang DG, Chen XQ, et al. A novel and homogeneous scaffold material:preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym Bull. 2018;75:985–1000.
  • Lan W, He L, Liu YW. Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings. 2018;8:291.
  • Noshirvani N, Ghanbarzadeh B, Gardrat C, et al. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloid. 2017;70:36–45.
  • Costa MJ, Marques AM, Pastrana LM, et al. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloid. 2018;81:442–448.
  • Farahnaky A, Saberi B, Majzoobi M. Effect of glycerol on physical and mechanical properties of wheat starch edible films. J Texture Stud. 2013;44:176–186.
  • Zhang HP, Deng LX, Yang MY, et al. Enhancing effect of glycerol on the tensile Properties of Bombyx mori Cocoon sericin films. Int J Mol Sci. 2011;12:3170–3181.
  • Lim LT, Mine Y, Tung MA. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative Humidity, temperature, and glycerol content. J Food Sci. 1999;64:616–622.
  • Jost V, Kobsik K, Schmid M, et al. Influence of plasticizer on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydr Polym. 2014;110:309–319.
  • Olivas GI, Barbosa-CáNovas GV. Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT Food Sci Technol. 2008;41:359–366.
  • Oksman K, Mathew AP, Bondeson D, et al. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol. 2006;66:2776–2784.
  • Kvien I, Sugiyama J, Votrubec M, et al. Characterization of starch based nanocomposites. J Mater Sci. 2007;42:8163–8817.
  • Ghasemlou M, Khodaiyan F, Oromiehie A. Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types. Int J Biol Macromol. 2011;49:814–821.
  • Kang H, Li Y, Gong M, et al. An environmentally sustainable plasticizer toughened polylactide. RSC Adv. 2018;8:11643–11651.
  • Jafarzadeh S, Alias A, Ariffin F, et al. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. Int J Food Prop. 2018;21:983–995.
  • Pang J, Liu X, Zhang M, et al. Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-Allyl-3-methylimidaxolium chloride (AmimCl). Materials. 2013;6:1270–1284.
  • Bertuzzi MA, Vidaurre EFC, Armada M, et al. Water vapor permeability of edible starch based films. J. Food Eng. 2007;80:972–978.
  • Sirvio LM, Grussing DM. The effect of gas permeability of film dressings on wound environment and healing. J Invest Dermatol. 1989;93:528–531.
  • Percivel SL, MPhil SM, Hunt JA, et al. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 2014;22:174–186.
  • Huang S, Zhang Y, Tang L, et al. Functional bilayered skin substitute constructed by tissue engineered extracellular matrix and microsphere incorporated gelatin hydrogel for wound repair. Tissue Eng Part A. 2009;15:2617–2624.
  • Menzies KL, Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci. 2010;87:387–399.
  • Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:411–418.
  • Kizilay E, Kayitmazer AB, Dubin PL. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv Colloid Interface Sci. 2011;167:24–37.
  • Lau HC, Jeong S, Kim A. Gelatin-alginate coacervates for circumventing proteolysis and probing intermolecular interactions by SPR. Int J Biol Macromo. 2018;117:427–434.
  • Choi CN, Song HJ, Kim MJ, et al. Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor. Korean J Chem Eng. 2009;26:136–140.
  • Phisalaphong M, Saibuatong O. Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym. 2008;79:455–460.
  • Boateng J, Burgos-Amador R, Okeke O, et al. Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromol. 2015;79:63–71.
  • Bergo P, Sobral PJA, Prison JM. Effect of glycerol on physical properties of cassava starch films. J Food Process Preserv. 2010;34:401–410.
  • Xu M, Li W, Ma C, et al. Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J Mater Chem C. 2018;6:5391–5400.
  • Wongpanit P, Sanchavanakit N, Pavasant P, et al. Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan. Macromol Biosci. 2005;5:1001–1012.
  • Kingkaew J, Jatupaiboon N, Sanchavanakit N, et al. Biocompatibility and growth of human keratinocytes and fibroblasts on biosynthesized cellulose-chitosan film. J Biomater Sci Polym Ed. 2010;21:1009–1021.
  • Tsao CT, Leung M, Chang JY, et al. A simple material model to generate epidermal and dermal layers in vitro for skin regeneration. J Mater Chem B. 2014;2:5256–5264.
  • Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003;24:4023–4029.
  • Loh EYX, Mohamad N, Fauzi MB, et al. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep. 2018;8:2875
  • Enrione J, Blaker J, Brown D, et al. Edible scaffolds based on non-mammalian biopolymers for myoblast growth. Materials. 2017;10:1404.
  • Song JE, Sim BR, Jeon YS, et al. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. J Biomater Sci Polym Ed. 2019;28:1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.