369
Views
7
CrossRef citations to date
0
Altmetric
Articles

Cotton cellulose nanofiber/chitosan nanocomposite: characterization and evaluation of cytocompatibility

, , , , , , , & show all
Pages 1489-1504 | Received 24 May 2019, Accepted 18 Jul 2019, Published online: 12 Aug 2019

References

  • Guo W, Tan C, Shi K, et al. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale. 2018;10:17751–17760.
  • Marudova M, Yorov T. Chitosan/poly(lactic acid) blends as drug delivery systems. Int J Polym Mater. 2019;68:99–106.
  • Amaral DL, Zanette RS, Almeida CG, et al. In vitro evaluation of barium titanate nanoparticle/alginate 3D scaffold for osteogenic human stem cell differentiation. Biomed Mater. 2019;14:035011
  • RnR Market Research. 2015. Top 10 medical device technologies market by type (IVD, cardiology, diagnostic imaging, orthopedics, ophthalmology, endoscopy, diabetes care, wound management, kidney/dialysis, and anesthesia & respiratory care devices) – Global forecast to 2020. Available from: https://www.marketsandmarkets.com/Market-Reports/top-10-medical-device-technologies-96.html. Accessed May 24, 2019.
  • Ilyas RA, Sapuan SM, Ishak MR, et al. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym. 2018;202:186–202.
  • Abral H, Basri A, Muhammad F, et al. A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocoll. 2019;93:276–283.
  • Halimatul MJ, Sapuan SM, Jawaid M, et al. Effect of sago starch and plasticizer content on the properties of thermoplastic films: mechanical testing and cyclic soaking-drying. Polymer. 2019;64:32–41.
  • Liu Y, Shen X, Zhou H, et al. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization. Appl Surf Sci. 2016;370:270–278.
  • Palem RR, Saha N, Shimoga GD, et al. Chitosan-silver nanocomposites: new functional biomaterial for healthcare applications. Int J Polym Mater. 2018;67:1–10.
  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015:1.
  • Carvalho CR, López-Cebral R, Silva-Correia J, et al. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Mater Sci Eng C Mater Biol Appl. 2017;71:1122–1134.
  • Yang Y, Wang K, Gu X, et al. Biophysical regulation of cell behavior-cross talk between substrate stiffness and nanotopography. Engineering. 2017;3:36–54.
  • Shi L, Wang K, Yang Y. Adhesion-based tumor cell capture using nanotopography. Colloids Surf B Biointerfaces. 2016;147:291–299.
  • Lalwani G, Gopalan A, D'Agati M, et al. Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J Biomed Mater Res A. 2015;103:3212–3225.
  • Ilyas RA, Sapuan SM, Ishak MR. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym. 2018;181:1038–1051.
  • Ilyas RA, Sapuan SM, Ishak MR, et al. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int J Biol Macromol. 2019;123:379–388.
  • Cao L, Yuan D, Xu C, et al. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale. 2017;9:15696–15706.
  • Jia Y, Wang X, Huo M, et al. Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater Nanotechnol. 2017;7:1–8.
  • Gong X, Wang Y, Chen L. Enhanced emulsifying properties of wood-based cellulose nanocrystals as pickering emulsion stabilizer. Carbohydr Polym. 2017;169:295–303.
  • Song L, Li Y, Xiong Z, et al. Water-induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr Polym. 2018;179:110–117.
  • Ilyas RA, Sapuan SM, Ibrahim R, et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. J Mater Re Technol. 2019;8:2753–2766.
  • Pereira MM, Raposo NR, Brayner R, et al. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology. 2013;24:075103.
  • OECD/FAO [Internet]. Paris: “Cotton.” In: OECD-FAO Agricultural Outlook 2016–2025; 2016 [Cited 2019 Jul 11]. Available from: http://dx.doi.org/10.1787/agr_outlook-2016-14-en.
  • Li C, Shu S, Chen R, et al. Functionalization of electrospun nanofibers of natural cotton cellulose by cerium dioxide nanoparticles for ultraviolet protection. J Appl Polym Sci. 2013;130:1524–1529.
  • Chen W, Abe K, Uetani K, et al. Individual cotton cellulose nanofibers: pre-treatment and fibrillation technique. Cellulose. 2014;21:1517–1528.
  • Wang J, Liu X, Jin T, et al. Preparation of nanocellulose and its potential in reinforced composites: a review. J Biomater Sci Polym Ed. 2019;30:919–946.
  • Pooyan P, Kim I, Jacob K, et al. Design of a cellulose-based nanocomposite as a potential polymeric scaffold in tissue engineering. Polymer. 2013;54:2105–2114.
  • Sanyang ML, Ilyas RA, Sapuan SM, et al. Bionanocomposites for packaging applications. New York (NY): Springer International Publishing, 2018. Chapter 7, Sugar palm starch-based composites for packaging applications, p. 125–147.
  • Ilyas RA, Sapuan SM, Ishak MR, et al. Sugar palm nanocrystalline cellulose reinforced sugar palm starch composite: Degradation and water-barrier properties. IOP Conf Ser: Mater Sci Eng. 2018;368:012006.
  • Ilyas RA, Sapuan SM, Ishak MR, et al. Water transport properties of bionanocomposites reinforced by sugar palm (Arenga Pinnata) nanofibrillated cellulose. J Adv Res Fluid Mech. Therm. Sci. 2018;51:234–246.
  • Rane AV, Kanny K, Abitha VK, et al. In micro and nano technologies, synthesis of inorganic nanomaterials. London (UK): Woodhead Publishing, 2018. Chapter 5, Methods for synthesis of nanoparticles and fabrication of nanocomposites, p. 121–139.
  • Jameela SR, Suma N, Jayakrishnan A. Protein release from poly(ε-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: A comparative study. J Biomater Sci Polym Ed. 1997;8:457–466.
  • Chen RD, Huang CF, Hsu SH. Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Carbohydr Polym. 2019;212:75–88.
  • De France KJ, Babi M, Vapaavuori J, et al. 2.5D Hierarchical structuring of nanocomposite hydrogel films containing cellulose nanocrystals. ACS Appl Mater Interfaces. 2019;11:6325–6335.
  • Mi H-Y, Jing X, Salick MR, et al. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater. 2016;62:417–427.
  • Kanimozhi K, Basha SK, Kumari VS, et al. In vitro cytocompatibility of chitosan/PVA/methylcellulose – nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl Surf Sci. 2018;449:574–583.
  • Friend DFL, Leyva González ME, Caraballo MM, et al. Biological properties of electrospun cellulose scaffolds from biomass. J Biomater Sci Polym Ed. 2019;24:1–16.
  • Yu Z, Wang W, Dhital R, et al. Antimicrobial effect and toxicity of cellulose nanofibril/silver nanoparticle nanocomposites prepared by an ultraviolet irradiation method. Colloids Surf B Biointerfaces. 2019;180:212–220.
  • Gwyddion software user guide, version 2.28 [Internet]. Czech Republic: Czech Metrology Institute, Brno; 2019 [cited 2019 Jul 12]. Available from: http://gwyddion.net/
  • Kouser R, Vashist A, Zafaryab M, et al. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;84:168–179.
  • Rhee S, Jiang H, Ho CH, et al. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc Natl Acad Sci U S A. 2007;104:5425–5430.
  • Abramoff M, Magalhaes P, Ram S. Image processing with image J. Biophotonics Int. 2004;11:36–42.
  • Reddy N, Yang Y. Natural cellulose fibers from soybean straw. Bioresour Technol. 2009;100:3593–3598.
  • Tibolla H, Pelissari F, Rodrigues M, et al. Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind Crops Prod. 2017;95:664–674.
  • Yu S, Wu S, Wu J, et al. Tripolyphosphate cross-linked macromolecular composites for the growth of shape- and size-controlled apatites. Molecules. 2012;18:27–40.
  • Jiang Y, Zhang H, Wang Y, et al. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One. 2013;8:e65756.
  • Varanasi S, Henzel L, Mendoza L, et al. Pickering emulsions electrostatically stabilized by cellulose nanocrystals. Front Chem. 2018;6:409.
  • Lin N, Dufresne A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale. 2014;6:5384–5393.
  • Sacui IA, Nieuwendaal RC, Burnett DJ, et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces. 2014;6:6127–6138.
  • Zhou C, Wu Q. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B Biointerfaces. 2011;84:155–162.
  • Wang X, Hu X, Dulińska-Molak I, et al. Discriminating the independent influence of cell adhesion and spreading area on stem cell fate determination using micropatterned surfaces. Sci Rep. 2016;6:28708.
  • McMurray R, Gadegaard N, Tsimbouri P, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10:637–644.
  • Dalby MJ, Gadegaard N, Oreffo RO. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature Mater. 2014;13:558–569.
  • Goreham R, Mierczynska A, Smith L, et al. Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv. 2013;3:10309.
  • Chen W, Villa-Diaz LG, Sun Y, et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano. 2012;6:4094–4103.
  • Hu D, Li K, Xie Y, et al. The combined effects of nanotopography and Sr ion for enhanced osteogenic activity of bone marrow mesenchymal stem cells (BMSCs). J Biomater Appl. 2017;31:1135–1147.
  • Chen W, Han S, Qian W, et al. Nanotopography regulates motor neuron differentiation of human pluripotent stem cells. Nanoscale. 2018;10:3556–3565.
  • Kim J, Bae W, Kim Y, et al. Directional matrix nanotopography with varied sizes for engineering wound healing. Adv Healthcare Mater. 2017;6:1700297.
  • Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224.
  • Santos TCD, Rescignano N, Boff L, et al. Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films. Carbohydr Polym. 2017;173:638–644.
  • Knupp J, Arvan P, Chang A. Increased mitochondrial respiration promotes survival from endoplasmic reticulum stress. Cell Death Differ. 2019;26:487–501.
  • Fangkangwanwong J, Sae-Liang N, Sriworarat C, et al. Water-based chitosan for thymine conjugation: a simple, efficient, effective, and green pathway to introduce cell compatible nucleic acid recognition. Bioconjugate Chem. 2016;27:2301–2306.
  • Hsu LW, Ho YC, Chuang EY, et al. Effects of pH on molecular mechanisms of chitosan-integrin interactions and resulting tight-junction disruptions. Biomaterials. 2013;34:784–793.
  • Colic M, Mihajlovic D, Mathew A, et al. Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose. 2015;22:763–778.
  • Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018;37:209–230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.