336
Views
17
CrossRef citations to date
0
Altmetric
Articles

Pharmacokinetics and tissue distribution of an orally administered mucoadhesive chitosan-coated amphotericin B-Loaded nanostructured lipid carrier (NLC) in rats

, ORCID Icon & ORCID Icon
Pages 141-154 | Received 08 Jul 2019, Accepted 13 Oct 2019, Published online: 22 Oct 2019

References

  • Gershkovich P, Wasan EK, Lin M, et al. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother. 2009;64(1):101–108.
  • Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol. 2014;174(4):1309–1330.
  • Chaudhari MB, Desai PP, Patel PA, et al. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res. 2016;6(4):354–364.
  • Jabri T, Imran M, Shafiullah, et al. Fabrication of lecithin-gum tragacanth muco-adhesive hybrid nano-carrier system for in-vivo performance of amphotericin B. Carbohydr Polym. 2018;194:89–96.
  • Yang Z, Tan Y, Chen M, et al. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech. 2012;13(4):1483–1491.
  • Amekyeh H, Billa N, Yuen K, et al. A gastrointestinal transit study on amphotericin B-loaded solid lipid nanoparticles in rats. AAPS PharmSciTech. 2015;16(4):871–877.
  • Halde C, Newcomer VD, Wright ET, et al. An evaluation of amphotericin B in vitro and in vivo in mice against Coccidioides immitis and Candida albicans, and preliminary observations concerning the administration of amphotericin B to man. J Invest Dermatol. 1957;28(3):217–232.
  • Serrano DR, Lalatsa A, Dea-Ayuela MA, et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol Pharmaceutics. 2015;12(2):420–431.
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 2009;5(2):184–191.
  • Cai S, Yang Q, Bagby TR, et al. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63(10-11):901–908.
  • Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.
  • Sachs-Barrable K, Lee SD, Wasan EK, et al. Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev. 2008;60(6):692–701.
  • Tan SLJ, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol. 2019;24(4):504–512.
  • Tan SLJ, Roberts CJ, Billa N. Antifungal and mucoadhesive properties of an orally administered chitosan-coated amphotericin B nanostructured lipid carrier (NLC). AAPS PharmSciTech. 2019;20(136):1–11.
  • Serrano DR, Lalatsa A. Oral amphotericin B: the journey from bench to market. J Drug Deliv Sci Technol 2017;42:1–9.
  • Torrado JJ, Espada R, Ballesteros MP, et al. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97(7):2405–2425.
  • Torrado JJ, Serrano DR, Uchegbu IF. The oral delivery of amphotericin B. Ther Deliv. 2013;4(1):9–12.
  • Jain S, Valvi PU, Swarnakar NK, et al. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharmaceutics. 2012;9(9):2542–2553.
  • Caldeira LR, Fernandes FR, Costa DF, et al. Nanoemulsions loaded with amphotericin B: a new approach for the treatment of leishmaniasis. Eur J Pharm Sci. 2015;70:125–131.
  • Espada R, Josa JM, Valdespina S, et al. HPLC assay for determination of amphotericin B in biological samples. Biomed Chromatogr. 2008;1(22):402–407.
  • Italia JL, Singh D, Ravi Kumar M. High-performance liquid chromatographic analysis of amphotericin B in rat plasma using alpha-naphthol as an internal standard. Anal Chim Acta. 2009;634(1):110–114.
  • Chakrabarty US, Pal TK. Rapid and sensitive high performance liquid chromatography method for the determination of amphotericin B in rat plasma. J Pharm Res 2011;4(9):3194–3197.
  • Echevarría I, Barturen C, Renedo MJ, et al. High-performance liquid chromatographic determination of amphotericin B in plasma and tissue. Application to pharmacokinetic and tissue distribution studies in rats. J Chromatogr. 1998;819:171–176.
  • Colombo M, Melchiades GL, Figueiró F, et al. Validation of an HPLC-UV method for analysis of kaempferol-loaded nanoemulsion and its application to in vitro and in vivo tests. J Pharm Biomed Anal. 2017;145:831–837.
  • Campanero MA, Zamarrefio AM, Diaz M, et al. Development and validation of an HPLC Method for determination of amphotericin B in plasma and sputum Involving solid phase extraction. 1997;46:641–646.
  • Cao X, Gibbs ST, Fang L, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–1686.
  • Echevarria I, Barturen C, Renedo MJ, et al. Comparative pharmacokinetics, tissue distributions, and effects on renal function of novel polymeric formulations of amphotericin B and amphotericin B-deoxycholate in rats. Antimicrob Agents Chemother. 2000;44(4):898–904.
  • Jung SH, Lim DH, Jung SH, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37(3-4):313–320.
  • Brocks DR, Davies NM. Lymphatic drug absorption via the enterocytes: pharmacokinetic simulation, modeling, and considerations for optimal drug development. J Pharm Pharm Sci. 2018;21(1s):254s–2570.
  • Cohn JS, Johnson EJ, Millar JS, et al. Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. J Lipid Res. 1993;34(12):2033–2040.
  • Trevaskis NL, Hu L, Caliph SM, et al. The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport. J Vis Exp. 2015;9:1–11.
  • Windmueller HG, Spaeth AE. Fat transport and lymph and plasma lipoprotein biosynthesis by isolated intestine. J Lipid Res. 1972;13(1):92–105.
  • Zhuang C, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–185.
  • De B, Bhandari K, Chakravorty N, et al. Computational pharmacokinetics and in vitro-in vivo correlation of anti-diabetic synergistic phyto-composite blend. WJD. 2015;6(11):1179–1185.
  • Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001;50(1–2):107–142.
  • Yuan Y, Li YB, Tai ZF, et al. Study of forced degradation behavior of pramlintide acetate by HPLC and LC-MS. J Food Drug Anal. 2018;26(1):409–415.
  • Yuan H, Chen J, Du Y, et al. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf B Biointerfaces. 2007;58(2):157–164.
  • Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev. 2001;47(1):39–54.
  • Fonte P, Andrade F, Araújo F, et al. Chitosan-coated solid lipid nanoparticles for insulin delivery. Meth Enzymol. 2012;508:295–314.
  • Zariwala MG, Elsaid N, Jackson TL, et al. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. Int J Pharm. 2013;456(2):400–407.
  • Ying XY, Cui D, Yu L, et al. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr Polym. 2011;84(4):1357–1364.
  • El-Shabouri M. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm. 2002;249(1-2):101–108.
  • Gershanik T, Benita S. Positively charged self-emulsifying oil formulation for improving oral bioavailability of progesterone. Pharm Dev Techn. 1996;1(2):147–157.
  • Padmanabhan P, Grosse J, Asad A, et al. Gastrointestinal transit measurements in mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Res. 2013;3(1):60–68.
  • Dalziel JE, Young W, Bercik P, et al. Tracking gastrointestinal transit of solids in aged rats as pharmacological models of chronic dysmotility. Neurogastroenterol Motil. 2016;28(8):1241–1251.
  • Espada R, Valdespina S, Dea MA, et al. In vivo distribution and therapeutic efficacy of a novel amphotericin B poly-aggregated formulation. J Antimicrob Chemother. 2008;61(5):1125–1131.
  • Banerjee T, Mitra S, Kumar Singh A, et al. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm. 2002;243(1-2):93–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.