379
Views
6
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications

, , , , , , , , & show all
Pages 910-937 | Received 21 Dec 2019, Accepted 02 Feb 2020, Published online: 12 Feb 2020

References

  • Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery – a review. Pharm Sci Technol Today. 2000;3(4):138–145.
  • Aditya NP, Espinosa YG, Norton IT. Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnol Adv. 2017;35(4):450–457.
  • Wang Z-Y, Zhao Y-M, Wang F, et al. Syntheses of poly (lactic acid‐co‐glycolic acid) serial biodegradable polymer materials via direct melt polycondensation and their characterization. J Appl Polym Sci. 2006;99(1):244–252.
  • Lassalle V, Ferreira ML. PLGA based drug delivery systems (DDS) for the sustained release of insulin: insight into the protein/polyester interactions and the insulin release behavior. J Chem Technol Biotechnol. 2010;85(12):1588–1596.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21(23):2475–2490.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.
  • Tsung MJ, Burgess DJ. Preparation and characterization of gelatin surface modified PLGA microspheres. AAPS PharmSci. 2001;3:14–24.
  • Han Y, Tian H, He P, et al. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system . Int J Pharm. 2009;378(1-2):159–166.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3(3):1377–1397.
  • Rahmani V, Shams K, Rahmani H. Nanoencapsulation of insulin using blends of biodegradable polymers and in vitro controlled release of insulin. J Chem Eng Process Technol. 2015;6(2):228.
  • Louka DA, Holwell N, Thomas BH, et al. (2017). Highly Bioactive SDF-1α Delivery from Low-Melting-Point, Biodegradable Polymer Microspheres. ACS Biomater Sci Eng. 2018;4(11):3747–3758.
  • Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J. Controlled Release. 2003;90(3):261–280.
  • Malathi S, Nandhakumar P, Pandiyan V, et al. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine. 2015;10:2207–2218####2218.
  • Hosseininasab S, Pashaei‐Asl R, Khandaghi AA, et al. Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery. Chem Biol Drug Des. 2014;84(3):307–315.
  • Andreas K, Zehbe R, Kazubek M, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: investigation for cartilage tissue engineering. Acta Biomater. 2011;7(4):1485–1495.
  • DeFrates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: fabrication and medical applications. IJMS. 2018;19(6):1717.
  • Li L, Jiang G, Yu W, et al. A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin. Mater Sci Eng C 2016;69:37–45.
  • Li L, Jiang G, Yu W, et al. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater Sci Eng C. 2017;70:278–286.
  • Liu D, Jiang G, Yu W, et al. Oral delivery of insulin using CaCO3-based composite nanocarriers with hyaluronic acid coatings. Mater Lett. 2017;188:263–266.
  • Alibolandi M, Alabdollah F, Sadeghi F, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation. J Controlled Release. 2016;227:58–70.
  • Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Controlled Release. 2007;117(2):163–170.
  • Jain S, Rathi VV, Jain AK, et al. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomed 2012;7(9):1311–1337.
  • Kanwar R, Rathee J, Salunke DB, et al. Green Nanotechnology-Driven Drug Delivery Assemblies. ACS Omega. 2019;4(5):8804–8815.
  • Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–1426.
  • Davachi SM, Kaffashi B. Preparation and Characterization of Poly L-Lactide/Triclosan Nanoparticles for Specific Antibacterial and Medical Applications. Int J Polym Mater Polym. Biomater. 2015;64(10):497–508.
  • Saravanan S, Malathi S, Sesh PSL, et al. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats. Int J Biol Macromol 2017;95:1190–1198.
  • Mousavi Nejad Z, Torabinejad B, Davachi SM, et al. Synthesis, physicochemical, rheological and in-vitro characterization of double-crosslinked hyaluronic acid hydrogels containing Dexamethasone and PLGA/Dexamethasone nanoparticles as hybrid systems for specific medical applications. Int J Biol Macromol. 2019;12:193–208.
  • Davachi SM, Kaffashi B, Roushandeh JM. Synthesis and characterization of a novel terpolymer based on L‐lactide, glycolide, and trimethylene carbonate for specific medical applications. Polym Adv Technol. 2012;23(3):565–573.
  • Piñón-Segundo E, Ganem-Quintanar A, Alonso-Pérez V, et al. Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm. 2005;294(1/2):217–232.
  • Cole ET, Scott RA, Connor AL, et al. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int J Pharm. 2002;231(1):83–95.
  • Atoufi Z, Kamrava SK, Davachi SM, et al. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. Int J Biol Macromol. 2019;139:1168–1181.
  • Mohammadi‐Rovshandeh J, Pouresmaeel‐Selakjani P, Davachi SM, et al. Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. J Appl Polym Sci. 2014;131(21):41095.
  • Sahraeian R, Davachi SM, Heidari BS. The effect of nanoperlite and its silane treatment on thermal properties and degradation of polypropylene/nanoperlite nanocomposite films. Compos Part B Eng. 2019;162:103–111.
  • Balali S, Davachi SM, Sahraeian R, et al. Preparation and Characterization of Composite Blends Based on Polylactic acid/Polycaprolactone and Silk. Biomacromolecules 2018;19(11):4358–4369.
  • Parsa P, Paydayesh A, Davachi SM. Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int J Biol Macromol. 2019;121:1061–1069.
  • Davachi SM, Kaffashi B, Torabinejad B, et al. In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer 2016;83:101–110.
  • Davoodi S, Oliaei E, Davachi SM, et al. Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv. 2016;6(46):39870–39882.
  • Kirk PL. Kjeldahl method for total nitrogen. Anal Chem. 1950;22(2):354–358.
  • Chromý V, Vinklárková B, Šprongl L, et al. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine. Crit Rev Anal Chem. 2015;45(2):106–111.
  • United States Pharmacopeial Convention. USP 38-NF 33 Supplement 2: General Chapters: <461> Nitrogen determination, Method 2. Rockville, MD: United States Pharmacopeial Convention [Internet]. 2015. Available from: https://www.uspnf.com/official-text/proposal-statuscommentary/usp-38-nf-33.
  • Kavitha K, Sujatha K, Manoharan S. Development, Characterization and Antidiabetic Potentials of Nilgirianthus ciliatus Nees Derived Nanoparticles. J Nanomedicine Biotherapeutic Discov. 2017;7(2):2–11.
  • Gupta RN, Pareek A, Suthar M, et al. Study of glucose uptake activity of Helicteres isora Linn. fruits in L-6 cell lines. Int J Diab Dev Ctries. 2009;29:170–173.
  • Pitt GG, Cha Y, Shah SS, et al. Blends of PVA and PGLA: control of the permeability and degradability of hydrogels by blending. J. Controlled Release. 1992;19(1-3):189–199.
  • Davachi SM, Shiroud Heidari B, Hejazi I, et al. Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydr Polym. 2017;155:336–344.
  • Davachi SM, Kaffashi B, Roushandeh JM, et al. Investigating thermal degradation, crystallization and surface behavior of l-lactide, glycolide and trimethylene carbonate terpolymers used for medical applications. Mater Sci Eng C. 2012;32(2):98–104.
  • Davachi SM, Bakhtiari S, Pouresmaeel-Selakjani P, et al. Investigating the effect of treated rice straw in PLLA/starch composite: mechanical, thermal, rheological, and morphological study. Adv Polym Technol. 2018;37(1):5–16.
  • Dwivedi N, Arunagirinathan MA, Sharma S, et al. Silica-coated liposomes for insulin delivery. J. Nanomater. 2010;2010:1–8.
  • Rostamizadeh K, Rezaei S, Abdouss M, et al. A hybrid modeling approach for optimization of PMAA–chitosan–PEG nanoparticles for oral insulin delivery. RSC Adv. 2015;5(85):69152–69160.
  • Davachi SM, Shekarabi AS. Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. Int J Biol Macromol. 2018;113:66–72.
  • Kumar MR, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004;25:1771–1777.
  • Greenwood R, Kendall K. Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J Eur Ceram Soc. 1999;19(4):479–488.
  • Hanaor D, Michelazzi M, Leonelli C, et al. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc. 2012;32(1):235–244.
  • Nafee N, Taetz S, Schneider M, et al. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine Nanotechnol Biol Med. 2007;3(3):173–183.
  • Sarmento B, Ribeiro A, Veiga F, et al. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf B Biointerfaces. 2006;53(2):193–202.
  • Schliecker G, Schmidt C, Fuchs S, et al. Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 2003;24(21):3835–3844.
  • Lee JB, Kim SE, Heo DN, et al. In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromol Res. 2010;18(12):1195–1202.
  • Yavarpanah S, Seyfi J, Davachi SM, et al. Evaluating the effect of hydroxyapatite nanoparticles on morphology, thermal stability and dynamic mechanical properties of multicomponent blend systems based on polylactic acid/Starch/Polycaprolactone. J Vinyl Addit Technol. 2019;25(S1):E83–E90.
  • Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull. 1999;46(3):183–196.
  • Datta SS, Abbaspourrad A, Weitz DA. Expansion and rupture of charged microcapsules. Mater Horiz. 2014;1(1):92–95.
  • Abbaspourrad A, Datta SS, Weitz DA. Controlling release from pH-responsive microcapsules. Langmuir 2013;29(41):12697–12702.
  • Bezuglov VV, Gretskaya NM, Klinov DV, et al. Nanocomplexes of recombinant proteins and polysialic acid: Preparation, characteristics, and biological activity. Russ J Bioorg Chem. 2009;35(3):320–325.
  • Ungaro F, di Villa Bianca R, d’Emmanuele Giovino C, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Controlled Release. 2009;135(1):25–34.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Arifin DY, Lee LY, Wang C-H. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58(12/13):1274–1325.
  • Korsmeyer RW, Von Meerwall E, Peppas NA. Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. J Polym Sci B Polym Phys. 1986;24(2):409–434.
  • Duan K, Xiao D, Weng J. Triclosan-loaded PLGA microspheres-porous titanium composite coating [Internet] [Thesis]. [ChengDu]: Southwest Jiaotong; 2013. Available from: http://www.paper.edu.cn/download/downPaper/201304-493.
  • Davachi SM, Kaffashi B, Zamanian A, et al. Investigating composite systems based on poly l-lactide and poly l-lactide/triclosan nanoparticles for tissue engineering and medical applications. Mater Sci Eng C. 2016;58:294–309.
  • Della Porta G, Falco N, Giordano E, et al. PLGA microspheres by supercritical emulsion extraction: a study on insulin release in myoblast culture. J Biomater Sci Polym Ed. 2013;24(16):1831–1847.
  • Park TG, Lee HY, Nam YS. A new preparation method for protein loaded poly (D, L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J Controlled Release. 1998;55(2-3):181–191.
  • Park TG, Lu W, Crotts G. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (D, L-lactic acid-co-glycolic acid) microspheres. J Controlled Release. 1995;33(2):211–222.
  • Crotts G, Park TG. Protein delivery from poly (lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J Microencapsul. 1998;15(6):699–713.
  • Tandya A, Zhuang HQ, Mammucari R, et al. Supercritical fluid micronization techniques for gastroresistant insulin formulations. J Supercrit Fluids. 2016;107:9–16.
  • Petrus AK, Vortherms AR, Fairchild TJ, et al. Vitamin B12 as a carrier for the oral delivery of insulin. ChemMedChem Chem Enabling Drug Discov. 2007;2(12):1717–1721.
  • Elsayed A, Al Remawi M, Qinna N, et al. Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm. 2009;73(2):269–279.
  • Dressman JB, Amidon GL, Reppas C, et al. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.
  • Sun S, Liang N, Yamamoto H, et al. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin. Int J Nanomedicine. 2015;10:3489–3498.
  • Garbacz G, Wedemeyer R-S, Nagel S, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421–428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.