336
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials

ORCID Icon, , , , , & show all
Pages 1869-1893 | Received 14 Nov 2019, Accepted 08 Jun 2020, Published online: 24 Jun 2020

References

  • Grossen P, Witzigmann D, Sieber S, et al. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release. 2017;260:46–60.
  • Bapat RA, Joshi CP, Bapat P, et al. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2019;24(1):85–98.
  • Kumar S, Nehra M, Dilbaghi N, et al. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci. 2018;80:1–38.
  • Wrona M, Cran MJ, Nerín C, et al. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr Polym. 2017;156:108–117.
  • Hule RA, Pochan DJ. Polymer nanocomposites for biomedical applications. MRS Bull. 2007;32(4):354–358.
  • Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomed. 2018;13:5637–5655.
  • Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials cience: an introduction to materials in medicine. 2nd ed. Cambridge (MA): Academic Press; 2004.
  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.
  • Amreddy N, Babu A, Muralidharan R, et al. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Polymeric Gene Delivery Systems, Cham: Springer; 2017. p. 233–255.
  • Madurga R, Blackledge TA, Perea B, et al. Persistence and variation in microstructural design during the evolution of spider silk. Sci Rep. 2015;5:14820.
  • Bayrami S, Esmaili Z, SeyedAlinaghi SA, et al. Fabrication of long-acting insulin formulation based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles: preparation, optimization, characterization, and in vitro evaluation. Pharm Dev Technol. 2019;24(2):176–188.
  • Berthet M, Gauthier Y, Lacroix C, et al. Nanoparticle-based dressing: the future of wound treatment? Trends Biotechnol. 2017;35(8):770–784.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.
  • Crucho CIC, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl. 2017;80:771–784.
  • Li H, Ji Q, Sun Y, et al. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J Biomed Mater Res. 2017;105(1):265–273.
  • Leena RS, Vairamani M, Selvamurugan N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces. 2017;158:308–318.
  • Wang S, Sun C, Guan S, et al. Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B. 2017;5(24):4774–4788.
  • Bahari Javan N, Montazeri H, Rezaie Shirmard L, et al. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide. Eur J Pharm Sci. 2017;101:167–181.
  • Bini RA, Silva MF, Varanda LC, et al. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release. Colloids Surf B Biointerfaces. 2017;157:191–198.
  • Montanheiro TLA, Montagna LS, Machado JPB, et al. Covalent functionalization of MWCNT with PHBV chains: evaluation of the functionalization and production of nanocomposites. Polym Compos. 2019;40(1):288–295.
  • Javan NB, Shirmard LR, Omid NJ, et al. Preparation, statistical optimisation and in vitro characterisation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (lactic-co-glycolic acid) blend nanoparticles for prolonged delivery of teriparatide. J Microencapsul. 2016;33:460–474.
  • Varan C, Wickström H, Sandler N, et al. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int J Pharm. 2017;531(2):701–713.
  • Razzazan A, Atyabi F, Kazemi B, et al. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C Mater Biol Appl. 2016;62:614–625.
  • Fatona A, Berry RM, Brook MA, et al. Versatile surface modification of cellulose fibers and cellulose nanocrystals through modular triazinyl chemistry. Chem Mater. 2018;30(7):2424–2435.
  • Luo W, Cheng L, Yuan C, et al. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. Int J Biol Macromol. 2019;134:469–479.
  • Lin N, Dufresne A. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J. 2014;59:302–325.
  • Butron A, Llorente O, Fernandez J, et al. Morphology and mechanical properties of poly(ethylene brassylate)/cellulose nanocrystal composites. Carbohydr Polym. 2019;221:137–145.
  • Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos. Phil Trans R Soc A. 2018;376(2112):20170040.
  • Jonoobi M, Oladi R, Davoudpour Y, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose. 2015;22(2):935–969.
  • Seabra AB, Bernardes JS, Fávaro WJ, et al. Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym. 2018;181:514–527.
  • Hivechi A, Hajir Bahrami S, Siegel RA. Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. Int J Biol Macromol. 2019;124:411–417.
  • Yin Y, Zhao L, Jiang X, et al. Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose. 2017;24(11):4773–4784.
  • Cheng F, Liu C, Wei X, et al. Preparation and characterization of 2,2,6,6-tetramethylpiperidine-1- oxyl (TEMPO)-oxidized cellulose nanocrystal/alginate biodegradable composite dressing for hemostasis applications. ACS Sustain Chem Eng. 2017;5(5):3819–3828.
  • Hivechi A, Bahrami SH, Siegel RA. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Mater Sci Eng C. 2019;94:929–937.
  • Vieyra H, Juárez E, López UF, et al. Cytotoxicity and biocompatibility of biomaterials based in polyhydroxybutyrate reinforced with cellulose nanowhiskers determined in human peripheral leukocytes. Biomed Mater. 2018;13(4):045011.
  • Montanheiro TLdA, Montagna LS, Patrulea V, et al. Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly (3-hydroxybutyrate- co -3-hydroxyvalerate) scaffolds. J Mater Sci. 2019;54(9):7198–7210.
  • Raphey VR, Henna TK, Nivitha KP, et al. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C. 2019;100:616–630.
  • Kunkalekar RK, Gawas UB. Role of nanoparticles in advanced biomedical research. Advances in Biological Science Research. India: Academic Press; 2019. p. 347–361.
  • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.
  • Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6:1–22.
  • Liang X, Cheng Q. Synergistic reinforcing effect from graphene and carbon nanotubes. Compos. Commun. 2018;10:122–128.
  • Wang M, Webster TJ. Nano-biomaterials and their applications. In: reference module in biomedical sciences. Encyclopedia of biomedical engineering; New York (NY): Elsevier; 2019. p. 153–161.
  • Asadian E, Ghalkhani M, Shahrokhian S. Electrochemical sensing based on carbon nanoparticles: a review. Sensors Actuat B. Chem. 2019. https://link.springer.com/article/10.1007%2Fs12598-018-1021-2#citeas
  • Reddy S, Xu X, He L, et al. Allotropic carbon (graphene oxide and reduced graphene oxide) based biomaterials for neural regeneration. Curr. Opin Biomed Eng. 2018;6:120–129.
  • Karami P, Khasraghi SS, Hashemi M, et al. Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci. 2019;269:122–151.
  • Vengurlekar S, Chaturvedi SC. Chapter 10 - Elevating toward a new innovation: carbon nanotubes (CNTs). Biomedical Applications of Nanoparticles, India: William Andrew; 2019. p. 271–294.
  • Rifai A, Pirogova E, Diamond FK. Diamond, Carbon nanotubes and graphene for biomedical applications. Encyclopedia of Biomedical Engineering; Australia: RMIT University; 2019. p. 97–107.
  • de Menezes BRC, Rodrigues KF, Fonseca BdS, et al. Recent advances on the use of carbon nanotubes as smart biomaterials. J Mater Chem B. 2019;7(9):1343–1360.
  • Saito R, Dresselhaus G, Dresselhaus M S. Physical properties of carbon nanotubes. London: Imperial College Press; 1998.
  • Donaldson K, Aitken R, Tran L, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5–22.
  • Bhattacharya M, Seong W. Carbon nanotube-based materials—preparation, biocompatibility, and applications in dentistry. Nanobiomaterials in Clinical Dentistry, New York (NY): Elsevier. 2019.
  • Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. AAAS. 2016;273:483–487.
  • Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science (80). 1996;273(5274):483–487.
  • Cassell AM, Raymakers JA, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B. 1999;103(31):6484–6492.
  • Sinnott SB, Andrews R, Qian D, et al. Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett. 1999;315(1–2):25–30.
  • Shao H, Li T, Zhu R, et al. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials. 2018;175:93–109.
  • Reddy SK, Kumar S, Varadarajan KM, et al. Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites. Mater Sci Eng C. 2018;92:957–968.
  • Manoj Kumar R, Rajesh K, Haldar S, et al. Surface modification of CNT reinforced UHMWPE composite for sustained drug delivery. J Drug Deliv Sci Technol. 2019;52:748–759.
  • Ovoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomicallythin carbon films. Science (80). 2004;306:666–669.
  • Wang J, Jin X, Li C, et al. Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem Eng J. 2019;370:831–854.
  • Xie H, Cao T, Rodríguez-Lozano FJ, et al. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dent Mater. 2017;33(7):765–774.
  • Li D, Liu T, Yu X, et al. Fabrication of graphene–biomacromolecule hybrid materials for tissue engineering application. Polym Chem. 2017;30:1–13.
  • Gao W. The chemistry of graphene oxide. Switzerland: Springer. 2015.
  • Shamekhi MA, Mirzadeh H, Mahdavi H, et al. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering. Int J Biol Macromol. 2019;127:396–405.
  • Kurniawan A, Muneekaew S, Hung C, et al. Modulated transdermal delivery of nonsteroidal anti-inflammatory drug by macroporous poly(vinyl alcohol)-graphene oxide nanocomposite films. Int J Pharm. 2019;566:708–716.
  • Bezzon VDN, Montanheiro TLA, de Menezes BRC, et al. Carbon nanostructure-based sensors: a brief review on recent advances. Adv Mater Sci Eng. 2019;2019:1–21.
  • Kulakova II. Modification of surface chemistry of nanodiamonds. Phys Solid State. 2004;46(4):636–643.
  • Osswald S, Yushin G, Mochalin V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc. 2006;128(35):11635–11642.
  • Dolmatov VY. Detonation synthesis ultradispersed diamonds: properties and applications. Russ Chem Rev. 2001;70(7):607–626.
  • Vul' A, Baidakova M, Dideikin A, Nanocrystalline diamond. In: Nanomaterials handbook. CRC Press. 2006.
  • Gon D, Ena R, Hyun K, et al. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int. J. Pharm. 2016;514:41–51.
  • Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry. 2008;14(5):1382–1390.
  • Houshyar S, Kumar GS, Rifai A, et al. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Mater Sci Eng C. 2019;100:378–387.
  • Shuai C, Li Y, Wang G, et al. Surface modification of nanodiamond: toward the dispersion of reinforced phase in poly-L-lactic acid scaffolds. Int J Biol Macromol. 2019;126:1116–1124.
  • Hashemi Tabatabaei R, Jafari SM, Mirzaei H, et al. International Journal of Biological Macromolecules Preparation and characterization of nano-SiO 2 reinforced gelatin-k- carrageenan biocomposites. Int J Biol Macromol. 2018;111:1091–1099.
  • Khan I, Hussain G, Tariq M, et al. Fabrication of UHMW polyethylene/nano-hydroxyapatite biocomposite via heat-assisted friction stir processing; Int J Adv Manuf Technol. 2018; 96, 3651–3663.
  • Rezaei DM, Farhadian M, Rashid AM, et al. Nano-biphasic calcium phosphate ceramic for the repair of bone defects. J Craniofac Surg. 2018;29:543–548.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Mater Sci Eng C. 2018;86:83–94.
  • Castro AGB, Diba M, Kersten M, et al. Materials science & engineering C development of a PCL-silica nanoparticles composite membrane for guided bone regeneration. Mater Sci Eng C. 2018;85:154–161.
  • Sundaram MN, Amirthalingam S, Mony U, et al. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int J Biol Macromol. 2019;129:936–943.
  • Molaei A, Yousefpour M. Electrophoretic deposition of chitosan – bioglass – hydroxyapatite – halloysite nanotube composite coating. Rare Met. 2018.
  • Rao KS, El-Hami K, Kodaki T, et al. A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci. 2005;289(1):125–131.
  • Chiang YD, Lian HY, Leo SY, et al. Controlling particle size and structural properties of mesoporous silica nanoparticles using the taguchi method. J Phys Chem C. 2011;115(27):13158–13165.
  • Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321–330.
  • Song Y, Lin K, He S, et al. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. IJN. 2018;13:505–523.
  • Nokhasteh S, Sadeghi A, Molavi M, et al. Effect of bioactive glass nanoparticles on biological properties of PLGA/collagen scaffold. Prog Biomater. 2018;7(2):111–119.
  • Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag(2)O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46(6):1940–1945.
  • Ostomel TA, Shi Q, Tsung C, et al. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small. 2006;2(11):1261–1265.
  • Miola M, Verné E. Bioactive and antibacterial glass powders doped with copper by ion-exchange in aqueous solutions. 2016; 9(6):1–16.
  • Tanzi MC, Farè S, Candiani G. Biomaterials and Applications. Foundations of Biomaterials Engineering., Cambridge (MA): Academic Press; 2019. p. 199–287.
  • Zikalala N, Matshetshe K, Parani S, et al. Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano-Struct Nano-Objects. 2018;16:288–299.
  • Aktürk A, Taygun ME, Güler FK, et al. Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids Surfaces A Physicochem Eng Asp. 2019;562:255–262.
  • Shao J, Wang B, Li J, et al. Antibacterial effect and wound healing ability of silver nanoparticles incorporation into chitosan-based nanofibrous membranes. Mater Sci Eng C Mater Biol Appl. 2019;98:1053–1063.
  • Bogdanović U, Dimitrijević S, Škapin SD, et al. Copper-polyaniline nanocomposite: role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. Mater Sci Eng C Mater Biol Appl. 2018;93:49–60.
  • Prokhorov E, España-Sánchez BL, Luna-Bárcenas G, et al. Chitosan/copper nanocomposites: correlation between electrical and antibacterial properties. Colloids Surf B Biointerfaces. 2019;180:186–192.
  • Tentor FR, Oliveira JD, Scariot DB, et al. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromol. 2017;102:1186–1194.
  • Wang R, Deng J, He D, et al. PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomedicine. 2019;16:195–205.
  • McMahon SJ, Mendenhall MH, Jain S, et al. Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol. 2008;53(20):5635–5651.
  • McNamara K, Tofail S. Nanoparticles in biomedical applications. Adv Phys X. 2017;2(1):54–88.
  • Mishra PK, Mishra H, Ekielski A, et al. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–1834.
  • Dinali R, Ebrahiminezhad A, Manley-Harris M, et al. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol. 2017;43(4):493–507.
  • Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, et al. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Mater Sci Eng C. 2017;70:586–598.
  • Cano L, Pollet E, Avérous L, et al. Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading. Compos A Appl Sci Manuf. 2017;93:33–40.
  • Totu EE, Nechifor AC, Nechifor G, et al. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing - the fututre in dental care for elderly edentulous patients? J Dent. 2017;59:68–77.
  • Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int. 2017;43(1):907–914.
  • Garcia IM, Leitune VCB, Visioli F, et al. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J Dent. 2018;73:57–60.
  • Raj I, Mozetic M, Jayachandran VP, et al. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: physico-chemical and biological perspectives of nano reinforcement. Nanotechnology. 2018;29(30):305704
  • Kaliaraj GS, Vishwakarma V, Alagarsamy K, et al. Biological and corrosion behavior of m-ZrO2 and t-ZrO2 coated 316L SS for potential biomedical applications. Ceram Int. 2018;44(12):14940–14946.
  • Gad MM, Al-Thobity AM, Shahin SY, et al. Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. IJN. 2017;12:5409–5419.
  • Shahrousvand M, Hoseinian MS, Ghollasi M, et al. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: properties and cell behavior. Mater Sci Eng C. 2017;74:556–567.
  • Hu S, Zhou Y, Zhao Y, et al. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J Tissue Eng Regen Med. 2018;12(4):e2085–e2098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.