396
Views
9
CrossRef citations to date
0
Altmetric
Articles

BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans

, , , , , & ORCID Icon show all
Pages 2182-2198 | Received 08 Jun 2020, Accepted 10 Jul 2020, Published online: 21 Jul 2020

References

  • Poulain D. Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol. 2015;41(2):208–210.
  • Krüger W, Vielreicher S, Kapitan M, et al. Fungal-bacterial interactions in health and disease. Pathogens. 2019;8:70–109.
  • Costa-de-Oliveira S, Rodrigues AG. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms. 2020;8(2):154–173.
  • Pathirana RU, Friedman J, Norris HL, et al. Fluconazole-resistant Candida auris is susceptible to salivary histatin 5 killing and to intrinsic host defenses. Antimicrobial Agents Chemotherapy. 2018;62:e01872–17.
  • Dellière S, Healey K, Gits-Muselli M, et al. Fluconazole and echinocandin resistance of Candida glabrata correlates better with antifungal drug exposure rather than with MSH2 mutator genotype in a French cohort of patients harboring low rates of resistance. Front Microbiol. 2016;7:2038–2046.
  • Peron IH, Reichert-Lima F, Busso-Lopes AF, et al. Resistance surveillance in Candida albicans: a five-year antifungal susceptibility evaluation in a Brazilian University Hospital. PLoS One. 2016;11(7):e0158126–e0158134.
  • Cieplik F, Deng D, Crielaard W, et al. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol. 2018;44(5):571–589.
  • Pérez-Laguna V, Gilaberte Y, Millán-Lou MI, et al. A combination of photodynamic therapy and antimicrobial compounds to treat skin and mucosal infections: a systematic review. Photochem Photobiol Sci. 2019;18(5):1020–1029.
  • Mahmoudi H, Bahador A, Pourhajibagher M, et al. Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J Lasers Med Sci. 2018;9(3):154–160.
  • Rosa LP, Silva FC. Antimicrobial photodynamic therapy: a new therapeutic option to combat infections. J Med Microbiol Diagn. 2014;3(4):158–164.
  • Ghorbani J, Rahban D, Aghamiri S, et al. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 2018;27(4):293–302.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107.
  • Wu P-T, Lin C-L, Lin C-W, et al. Methylene-blue-encapsulated liposomes as photodynamic therapy nano agents for breast cancer cells. Nanomaterials (Basel). 2018;9(1):14–25.
  • Parasuraman P, Anju VT, Lal SBS, et al. Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus. Photochem Photobiol Sci. 2019;18(2):563–576.
  • Darabpour E, Kashef N, Mashayekhan S. Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study. Photodiagn Photodyn Ther. 2016;14:211–217.
  • Yin R, Agrawal T, Khan U, et al. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine (Lond)). 2015;10(15):2379–2404.
  • Qi M, Chi M, Sun X, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine. 2019;14:6937–6956.
  • Benoit DSW, Sims KR, Jr., Fraser D. Perspective: nanoparticles for oral biofilm treatments. ACS Nano. 2019;13(5):4869–4875.
  • Yeh YC, Huang TH, Yang SC, et al. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem. 2020;8:1–22.
  • Yu Z, Yu M, Zhang Z, et al. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res Lett. 2014;9(1):343–349.
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609–1623.
  • Yamamoto M, Shitomi K, Miyata S, et al. Bovine serum albumin-capped gold nanoclusters conjugating with methylene blue for efficient 1O2 generation via energy transfer. J Colloid Interface Sci. 2018;510(15):221–227.
  • Abreu AS, Carvalho JA, Trindade AC, et al. Synthesis, photophysical and photobiological characterization of BSA nanoparticles loaded with chloroaluminium phthalocyanine by one-step desolvation technique for photodynamic therapy action. J Biomater Sci Polym Ed. 2019;30(16):1559–1573.
  • Bronze-Uhle ES, Costa BC, Ximenes VF, et al. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl. 2017;10:11–21.
  • Ankarao A, Naik V, Rao KH. Formulation and in vitro evaluation of oral sustained release nanoparticulate delivery system of carvedilol. Int J Res Pharm Biomed Sci. 2012;3(2):925–928.
  • Ramachandran R, Shanmughavel P. Preparation and characterization of biopolymeric nanoparticles used in drug delivery. Indian J Biochem Biophys. 2010;47(1):56–59.
  • von Storp B, Engel A, Boeker A, et al. Albumin nanoparticles with predictable size by desolvation procedure. J Microencapsul. 2012;29(2):138–146.
  • Tarhini M, Benlyamani I, Hamdani S, et al. Protein-based nanoparticle preparation via nanoprecipitation method. Materials. 2018;11(3):394–411.
  • Merodio M, Arnedo A, Renedo MJ, et al. Ganciclovir-loaded albumin nanoparticles: characterization and in-vitro release properties. Eur J Pharm Sci. 2001;12(3):251–259.
  • Olaitan V, Chaw CS. Desolvation conditions for production of sulfasalazine based albumin nanoparticles: physical properties. Pharm Front. 2019;1:e190006–e1900020.
  • Kimura K, Yamasaki K, Nakamura H, et al. Preparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivatives. Chem Pharm Bull. 2018;66(4):382–390.
  • Sun S, Xiao QR, Wang Y, et al. Roles of alcohol desolvating agents on the size control of bovine serum albumin nanoparticles in drug delivery system. J Drug Delivery Sci Technol. 2018;47:193–199.
  • Jenita JL, Chocalingam V, Wilson B. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug-efavirenz. Int J Pharm Investig. 2014;4(3):142–148.
  • Tsuda A, Venkata NK. The role of natural processes and surface energy of inhaled engineered nanoparticles on aggregation and corona formation. NanoImpact. 2016;2:38–44.
  • Chen B, Wu C, Zhuo RX, et al. A self-assembled albumin based multiple drug delivery nanosystem to overcome multidrug resistance. RSC Adv. 2015;5(9):6807–6815.
  • Alves LA, Ferreira LB, Pacheco PF, et al. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget. 2018;9(38):25342–25354.
  • Chen ZA, Kuthati Y, Kankala RK, et al. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma. Sci Technol Adv Mater. 2015;16(5):054205–054217.
  • Anantharaman SB, Yakunin S, Peng C, et al. Strongly red-shifted photoluminescence band induced by molecular twisting in cyanine (Cy3) dye films. J Phys Chem C. 2017;121(17):9587–9593.
  • Perni S, Prokopovich P, Pratten J, et al. Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci. 2011;10(5):712–720.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
  • Ferro S, Ricchelli F, Mancini G, et al. Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitising agents. J Photochem Photobiol B. 2006;83(2):98–104.
  • Ferro S, Ricchelli F, Monti D, et al. Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int J Biochem Cell Biol. 2007;39(5):1026–1034.
  • Leonel LC, Carvalho ML, da Silva BM, et al. Photodynamic antimicrobial chemotherapy (PACT) using methylene blue inhibits the viability of the biofilm produced by Candida albicans. Photodiagn Photodyn Ther. 2019;26:316–323.
  • de Souza TFM, Antonio FCT, Zanotto M, et al. Photophysical and photochemical properties and aggregation behavior of phthalocyanine and naphthalocyanine derivatives. J Braz Chem Soc. 2017;29(6):1199–1209.
  • Mathé L, Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 2013;59(4):251–264.
  • Sardi JCO, Pitangui NS, Rodríguez-Arellanes G, et al. Highlights in pathogenic fungal biofilms. Rev Iberoam Micol. 2014;31(1):22–29.
  • Cullen PJ, Sprague GF. Jr., The regulation of filamentous growth in yeast. Genetics. 2012;190(1):23–49.
  • Pagonis TC, Chen J, Fontana CR, et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod. 2010;36(2):322–337.
  • Wu J, Xu H, Tang W, et al. Eradication of bacteria in suspension and biofilms using methylene blue loaded dynamic nanoplatforms. Antimicrob Agents Chemother. 2009;53(7):3042–3048.
  • Qi M, Li X, Sun X, et al. Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium. Dent Mater. 2019;35(11):1665–16681.
  • Zhang T, Ying D, Qi M, et al. Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 against periodontal pathogens. Molecules. 2019;24(15):2692–2709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.