375
Views
26
CrossRef citations to date
0
Altmetric
Research Article

pH-sensitive curcumin conjugated micelles for tumor triggered drug delivery

, , , &
Pages 320-336 | Received 12 Jun 2020, Accepted 05 Oct 2020, Published online: 15 Oct 2020

References

  • Marin JJ, Romero MR, Blazquez AG, et al. Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem Anti-Cancer Agents). 2009;9(2):162–184.
  • Blagosklonny MV. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol Sci. 2005;26(2):77–81.
  • Upponi JR, Jerajani K, Nagesha DK, et al. Polymeric micelles: theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials. 2018;170:26–36.
  • Giang I, Boland EL, Poon GM. Prodrug applications for targeted cancer therapy. AAPS J. 2014;16(5):899–913.
  • Girase ML, Patil PG, Ige PP. Polymer-drug conjugates as nanomedicine: a review. Int J Polym Mater Polym Biomater. 2020;69(15):925–990.
  • Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci. 2006;31(4):359–397.
  • Luo C, Sun J, Sun B, et al. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci. 2014;35(11):556–566.
  • Bildstein L, Dubernet C, Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev. 2011;63(1–2):3–23.
  • Peng H, Huang X, Melle A, et al. Redox-responsive degradable prodrug nanogels for intracellular drug delivery by crosslinking of amine-functionalized poly(N-vinylpyrrolidone) copolymers. J Colloid Interface Sci. 2019;540:612–622.
  • Qu Y, Chu B, Wei X, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J Controll Release. 2019;296:93–106.
  • Rezaei SJT, Sarijloo E, Rashidzadeh H, et al. pH-triggered prodrug micelles for cisplatin delivery: preparation and in vitro/vivo evaluation. React Funct Polym. 2020;146(104399):104399.
  • Rezaei SJT, Amani V, Nabid MR, et al. Folate-decorated polymeric Pt (ii) prodrug micelles for targeted intracellular delivery and cytosolic glutathione-triggered release of platinum anticancer drugs. Polym Chem. 2015;6(15):2844–2853.
  • Rezaei SJT, Sarbaz L, Niknejad H. Folate-decorated redox/pH dual-responsive degradable prodrug micelles for tumor triggered targeted drug delivery. RSC Adv. 2016;6(67):62630–62639.
  • Mao J, Li Y, Wu T, et al. A simple dual-pH responsive prodrug-based polymeric micelles for drug delivery. ACS Appl Mater Interfaces. 2016;8(27):17109–17117.
  • Wang H, Xu F, Li D, et al. Bioinspired phospholipid polymer prodrug as a pH-responsive drug delivery system for cancer therapy. Polym Chem. 2013;4(6):2004–2010.
  • Li S-Y, Liu L-H, Jia H-Z, et al. A pH-responsive prodrug for real-time drug release monitoring and targeted cancer therapy. Chem Commun. 2014;50(80):11852–11855.
  • Wang W, Wang B, Ma X, et al. Tailor-made pH-responsive poly(choline phosphate) prodrug as a drug delivery system for rapid cellular internalization. Biomacromolecules. 2016;17(6):2223–2232.
  • Huang D, Zhuang Y, Shen H, et al. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater Sci Eng C. 2018;82:60–68.
  • Rezaei SJ, Malekzadeh AM, Ramazani A, et al. pH-sensitive magnetite nanoparticles modified with hyperbranched polymers and folic acid for targeted imaging and therapy. Curr Drug Deliv. 2019;16(9):839–848.
  • Rezaei SJT, Norouzi K, Hesami A, et al. Au (III) complexes loaded pH-responsive magnetic nanogels for cancer therapy. Appl Organomet Chem. 2018;32(4):e4303.
  • Rezaei SJT, Abandansari HS, Nabid MR, et al. pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs. J Colloid Interface Sci. 2014;425:27–35.
  • Abas F, Lajis NH, Shaari K, et al. A Labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod. 2005;68(7):1090–1093.
  • Jagetia GC, Rajanikant G. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of gamma-radiation. J Surg Res. 2004;120(1):127–138.
  • Kunnumakkara AB, Guha S, Krishnan S, et al. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007;67(8):3853–3861.
  • Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225.
  • Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43(2):86–92.
  • Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92(1):39–43.
  • Rashidzadeh H, Salimi M, Sadighian S, et al. In vivo antiplasmodial activity of curcumin-loaded nanostructured lipid carriers. Curr Drug Deliv. 2019;16(10):923–930.
  • Kumar B, Priyadarshi R, Deeba F, et al. Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Mater Sci Eng C. 2020;107:110356.
  • Kang C, Jung E, Hyeon H, et al. Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomed Nanotechnol Biol Med. 2020;23:102104.
  • Kumar SU, Kumar V, Priyadarshi R, et al. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym. 2018;188:252–259.
  • Muangnoi C, Jithavech P, Ratnatilaka Na Bhuket P, et al. A curcumin-diglutaric acid conjugated prodrug with improved water solubility and antinociceptive properties compared to curcumin. Biosci Biotechnol Biochem. 2018;82(8):1301–1308.
  • Song J, Liu Y, Lin L, et al. Glycyrrhetinic acid modified and pH-sensitive mixed micelles improve the anticancer effect of curcumin in hepatoma carcinoma cells. RSC Adv. 2019;9(68):40131–40145.
  • Wang K, Guo C, Dong X, et al. In vivo evaluation of reduction-responsive alendronate-hyaluronan-curcumin polymer-drug conjugates for targeted therapy of bone metastatic breast cancer. Mol Pharmaceut. 2018;15(7):2764–2769.
  • Pillarisetti S, Maya S, Sathianarayanan S, et al. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids Surf B Biointerfaces. 2017;159:809–819.
  • Fang X-B, Zhang J-M, Xie X, et al. pH-sensitive micelles based on acid-labile pluronic F68-curcumin conjugates for improved tumor intracellular drug delivery. Int J Pharmaceut. 2016;502(1–2):28–37.
  • Sarika P, James NR, Nishna N, et al. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids Surf B Biointerfaces. 2015;133:347–355.
  • Feast WJ. Ring-opening polymerization. Edited by K. J. Ivin and T. Saegusa. Elseview Applied Science Publishers. Barking, Essex, 1984. Brit Polym J. 1984;16(3):160.
  • Frankel MB, Grant LR, Flanagan JE. Historical development of glycidyl azide polymer. J Propul Power. 1992;8(3):560–563.
  • Abazari M, Ghaffari A, Rashidzadeh H, et al. Current status and future outlook of nano-based systems for burn wound management. J Biomed Mater Res. 2020;108(5):1934–1952.
  • Nosrati H, Salehiabar M, Bagheri Z, et al. Preparation, characterization, and evaluation of amino acid modified magnetic nanoparticles: drug delivery and MRI contrast agent applications. Pharmaceut Dev Technol. 2018;23(10):1156–1167.
  • Naguib YW, Cui Z. Nanomedicine: the promise and challenges in cancer chemotherapy. In: Nanomaterial. Springer; 2014. p. 207–233.
  • Aghajanzadeh M, Zamani M, Rashidzadeh H, et al. Amphiphilic Y shaped miktoarm star copolymer for anticancer hydrophobic and hydrophilic drugs codelivery: synthesis, characterization, in vitro, and in vivo biocompatibility study. J Biomed Mater Res Part A. 2018;106(11):2817–2826.
  • Rajabi S, Ramazani A, Hamidi M, et al. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J Pharmaceut Sci. 2015;23(1):20.
  • Nabid MR, Rezaei SJT, Sedghi R, et al. Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer. 2011;52(13):2799–2809.
  • Rezaei SJT, Nabid MR, Niknejad H, et al. Multifunctional and thermoresponsive unimolecular micelles for tumor-targeted delivery and site-specifically release of anticancer drugs. Polymer. 2012;53(16):3485–3497.
  • Malekzadeh AM, Ramazani A, Rezaei SJT, et al. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J Colloid Interface Sci. 2017;490:64–73.
  • Tabatabaei Rezaei SJ, Hesami A, Khorramabadi H, et al. Pt (II) complexes immobilized on polymer-modified magnetic carbon nanotubes as a new platinum drug delivery system. Appl Organomet Chem. 2018;32(7):e4401.
  • Saranya T, Rajan V, Biswas R, et al. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol. 2018;110:227–233.
  • Cao Y, Gao M, Chen C, et al. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology. 2015;26(11):115101.
  • Rezaei SJT, Nabid MR, Niknejad H, et al. Folate-decorated thermoresponsive micelles based on star-shaped amphiphilic block copolymers for efficient intracellular release of anticancer drugs. Int J Pharmaceut. 2012;437(1–2):70–79.
  • Amin K, Dannenfelser R. In vitro hemolysis: guidance for the pharmaceutical scientist.
  • Guideline OO. 425: acute oral toxicity—up-and-down procedure. In OECD Guidelines for the Testing of Chemicals. Vol. 2. 2001. p. 12–16.
  • Song CW, Park H, Ross BD. Intra- and extracellular pH in solid tumors. Antiangiogenic agents in cancer therapy. Springer; 1999. p. 51–64.
  • Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13(1):89.
  • Becelli R, Renzi G, Morello R, et al. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer. J Craniofac Surg. 2007;18(5):1051–1054.
  • Albatany M, Ostapchenko VG, Meakin S, et al. Brain tumor acidification using drugs simultaneously targeting multiple pH regulatory mechanisms. J Neuro-Oncol. 2019;144(3):453–462.
  • Svastová E, Hulíková A, Rafajová M, et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004;577(3):439–445.
  • Lee SY, Ryu KH, Kang MS, et al. Effect of hyperthermia on the lactic acid and beta-hydroxybutyric acid content in tumour. Int J Hypertherm. 1986;2(2):213–222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.