176
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization and application of curcumin based polymeric bio-composite for efficient removal of endotoxins and bacterial cells from therapeutic preparations

, &
Pages 563-580 | Received 05 Sep 2020, Accepted 12 Nov 2020, Published online: 07 Dec 2020

References

  • Bilal M, Iqbal HM. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Int J Biol Macromol. 2019;130:462–482.
  • Moradali MF, Rehm BH. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;28:1–6.
  • Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26(34):6811–6817.
  • Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon. 2018;149:45–53.
  • Fingola FF, Albertino SR, Abrantes d. MP, et al. Proposed reduction of the in vivo pyrogen test by the in vitro LAL assay for the quality control of anticrotallic, antiscorpion, antirabies and antitetanus sera. Toxicol in Vitro. 2019;59:292–299.
  • Eun BL, Abraham J, Mlsna L, et al. Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav. 2015;5(8):e00348.
  • Dods SR. Characterising electrospun nano-fibre adsorbents for bioprocessing. Doctoral dissertation, UCL (University College London), London. Dods, Stewart Richard. Characterising electrospun nano-fibre adsorbents for bioprocessing. PhD diss., UCL (University College London), 2016.
  • Arain MS, Kazi TG, Afridi HI, et al. Application of dual cloud point extraction for the enrichment of zinc in serum samples of psychiatric patients prior to analysis by FAAS. J Ind Eng Chem. 2018;62:58–63.
  • Razdan S, Wang JC, Barua S. PolyBall: a new adsorbent for the efficient removal of endotoxin from biopharmaceuticals. Sci Rep. 2019;9(1):5.
  • Tani T, Shoji H, Guadagni G, Perego, et al. Extracorporeal removal of endotoxin: the polymyxin B-immobilized fiber cartridge. Contrib Nephrol. 2010;167:35–44.
  • Ramakrishna S, Fujihara K, Teo WE, et al. Electrospun nano-fibers: solving global issues. Mater Today. 2006;9(3):40–50.
  • Panda PK. Ceramic nano-fibers by electrospinning technique—A review. Indian Ceram Soc. 2007;66(2):65–76.
  • Naragund VS, Panda PK. Electrospinning of Polyacrylonitrile Nanofiber Membrane for Bacteria Removal. JMSA. 2018;5:68–74.
  • Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nano-fibers. J Control Release. 2015;220:584–591.
  • Chen D, Liu T, Zhou X, et al. Electrospinning fabrication of high strength and toughness polyimide nano-fiber membranes containing multiwalled carbon nanotubes. J Phys Chem B. 2009;113(29):9741–9748.
  • Ding, B., Yu, J. (Eds.). Electrospun nano-fibers for energy and environmental applications. Berlin Heidelberg: Springer, 2014; p. 69–110.
  • Hussain Z, Thu HE, Ng SF, et al. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: a review of new trends and state-of-the-art. Colloids Surf B Biointerfaces. 2017;150:223–241.
  • Hussain Z, Thu HE, Amjad MW, et al. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C Mater Biol Appl. 2017;77:1316–1326.
  • Kumari A, Dash D, Singh R. Curcumin inhibits lipopolysaccharide (LPS)-induced endotoxemia and airway inflammation through modulation of sequential release of inflammatory mediators (TNF-α and TGF-β1) in murine model. Inflammopharmacology. 2017;25(3):329–341.
  • Prakash P, Singh HR, Jha SK. Production, purification and kinetic characterization of glutaminase free anti-leukemic L-asparaginase with low endotoxin level from novel soil isolate. Prep Biochem Biotechnol. 2019;50(3):1–12.
  • Imada A, Igarasi S, Nakahama K, et al. Asparaginase and glutaminase activities of micro-organisms. Microbiology. 1973;76(1):85–99.
  • Kruger NJ. The Bradford method for protein quantitation. In The protein protocols handbook. Totowa, NJ: Humana Press, 2009; 17–24.
  • Kim DS, Park HB, Rhim JW, et al. Preparation and characterization of cross-linked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membrane Sci. 2004;240(1-2):37–48.
  • Vimala K, Yallapu MM, Varaprasad K, et al. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved anti-microbial activity. JBNB. 2011;02(01):55–64.
  • Padrao J, Goncalves S, Silva JP, et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll. 2016;58:126–140.
  • Huang Y, Yuan Z, Zhao D, et al. Polymyxin B immobilized nano-fiber sponge for endotoxin adsorption. Eur Polym. 2019;110:69–75.
  • Sulc R, Szekely G, Shinde S, et al. Phospholipid imprinted polymers as selective endotoxin scavengers. Sci Rep. 2017;7:1.
  • Felix Swamidoss V, Bangaru M, Nalathambi G, et al. Silver-incorporated poly vinylidene fluoride nano-fibers for bacterial filtration. Aerosol Sci Tech. 2019;53(2):196–206.
  • Dimitrijević R, Cvetković O, Miodragović Z, et al. SEM/EDX and XRD characterization of silver nanocrystalline thin film prepared from organometallic solution precursor. J Min Metall B. 2013;1:91–95.
  • Hsieh K, Zec HC, Chen L, et al. Simple and precise counting of viable bacteria by resazurin-amplified picoarray detection. Anal Chem. 2018;90(15):9449–9456.
  • Lindsay GK, Roslansky PF, Novitsky TJ. Single-step chromogenic Limulus amebocyte lysate assay for endotoxin. J Clin Microbiol. 1989;27(5):947–951.
  • Sun XZ, Williams GR, Hou XX, et al. Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr Polym. 2013;94(1):147–153.
  • Li D, Xia Y. Electrospinning of nano-fibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–1170.
  • Parascandola P, Branduardi P, de Alteriis E. PVA-gel (Lentikats®) as an effective matrix for yeast strain immobilization aimed at heterologous protein production. Enzyme Microb Technol. 2006;38(1-2):184–189.
  • Kamel NA, Soliman AA, Rozik NN, et al. Biophysical investigation of curcumin-based nanocomposite for wound dressing application. J. Appl. Pharm. Sci. 2018;8:35–44.
  • Mustafa Kiyani M, Sohail MF, Shahnaz G, et al. Evaluation of turmeric nanoparticles as anti-gout agent: modernization of a traditional drug. Medicina. 2019;55(1):10.
  • Faham S, Ghavami R, Golmohammadi H, et al. Spectrophotometric and visual determination of zoledronic acid by using a bacterial cell-derived nanopaper doped with curcumin. Mikrochim Acta. 2019;186(11):719.
  • Li X, Li D, Zhang Y, et al. Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy. 2020;68:104308.
  • Li X, Lv P, Yao Y, et al. A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel. Chem Eng J. 2020;379:122316.
  • Bendahou D, Bendahou A, Seantier B, et al. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Ind Crops Prod. 2015;65:374–382.
  • Bhawana BR, Buttar HS, Jain VK, et al. Curcumin nanoparticles: preparation, characterization, and anti-microbial study. J Agric Food Chem. 2011;5:2056–2061.
  • Das A, Roy A, Rajeshkumar S, et al. Anti-inflammatory activity of turmeric oil mediated silver nanoparticles. Rese J Pharm Technol. 2019;12(7):3507–3510.
  • Swingler S, Gupta A, Heaselgrave W, et al. An investigation into the anti-microbial properties of bacterial cellulose wound dressings loaded with curcumin: hydroxypropyl-β-cyclodextrin supramolecular inclusion complex. Access Microbiol. 2019;10:19.
  • Reller LB, Weinstein M, Jorgensen JH, et al. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749–1755.
  • Raniman FN. Antibacterial Activity of Turmeric Essential Oil (Curcuma lnnga L.) (Doctoral dissertation, Universiti Malaysia Kelantan).
  • Ericsson BH, Tunevall G, Wickman K. The paper disc method for determination of bacterial sensitivity to antibiotics: Relationship between the diameter of the zone of inhibition and the minimum inhibitory concentration. Scand J Clin Lab Invest. 1960;12(4):414–422.
  • Park JC, Ito T, Kim KO, et al. Electrospun poly (vinyl alcohol) nano-fibers: effects of degree of hydrolysis and enhanced water stability. Polym J. 2010;42(3):273–276.
  • Sadeghi A, Pezeshki-Modaress M, Zandi M. Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: fabrication and in vitro evaluation. Int J Biol Macromol. 2018;114:1248–1256.
  • Cai Y, Lu D, Zou Y, et al. Curcumin protects against intestinal origin endotoxemia in rat liver cirrhosis by targeting PCSK9. J Food Sci. 2017;82(3):772–780.
  • Sakata M, Sakamoto T, Shimizu M, et al. Aminated cellulose nanofibers for selective removal of endotoxins from protein solutions. Chem Lett. 2017;46(2):194–196.
  • Tyagi P, Singh M, Kumari H, et al. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS One. 2015;10(3):e0121313.
  • Ma X, Chen Y, Huang J, et al. In situ formed active and intelligent bacterial cellulose/cotton fiber composite containing curcumin. Cellulose. 2020;1–12.
  • Cao X, Zhu B, Zhang X, et al. Polymyxin B immobilized on cross-linked cellulose microspheres for endotoxin adsorption. Carbohydr Polym. 2016;136:12–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.