353
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Recent update on nano-phytopharmaceuticals in the management of diabetes

, ORCID Icon & ORCID Icon
Pages 2046-2068 | Received 13 Apr 2021, Accepted 03 Jul 2021, Published online: 28 Jul 2021

References

  • Sekgala MD, Monyeki KD, Mogale A, et al. The risk of metabolic syndrome as a result of lifestyle among Ellisras rural young adults. J Hum Hypertens. 2018;32(8–9):572–584.
  • Bibi S, Sakata K. Current computer-aided drug design send orders for reprints to [email protected] current status of computer-aided drug design for type 2 diabetes. CAD. 2016;12(2):167–177.
  • Bhardwaj M, Yadav P, Dalal S, et al. A review on ameliorative green nanotechnological approaches in diabetes management. Biomed Pharmacother. 2020;127:110198.
  • Patil PD, Mahajan UB, Patil KR, et al. Past and current perspective on new therapeutic targets for Type-II diabetes. Drug Des Dev Ther. 2017;11:1567–1583.
  • Salehi B, Ata A, Kumar NVA, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9(10):551.
  • Pereira ASP, Den Haan H, Peña-García J, et al. Exploring African medicinal plants for potential anti-diabetic compounds with the DIA-DB inverse virtual screening web serve. Molecules. 2019;24:1–30.
  • Arumugam G, Manjula P, Paari N. A review: anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis. 2013;2(3):196–200.
  • Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002;81(1):81–100.
  • Rosén J, Gottfries J, Muresan S, et al. Novel chemical space exploration via natural products. J Med Chem. 2009;52(7):1953–1962.
  • Dewanjee S, Chakraborty P, Mukherjee B, et al. Plant-based antidiabetic nanoformulations: the emerging paradigm for effective therapy. IJMS. 2020;21(6):2217.
  • Su L, Zhou F, Yu M, et al. Solid lipid nanoparticles enhance the resistance of oat-derived peptides that inhibit dipeptidyl peptidase IV in simulated gastrointestinal fluids. J Funct Foods. 2020;65:103773.
  • Saratale GD, Saratale RG, Cho SK, et al. Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials. J Alloys Compd. 2020;833:155083.
  • Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng. 2013;1(6):591–602.
  • Verma A, Gautam S, Bansal K, et al. Green nanotechnology: advancement in phytoformulation research. Medicines. 2019;6(1):39.
  • Gudise V, Chowdhury B, Manjappa AS. Antidiabetic and antihyperlipidemic effects of Argyreia pierreana and Matelea denticulata: higher activity of the micellar nanoformulation over the crude extract. J Tradit Complement Med. 2020;11(3):259–267.
  • Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis. Ind Eng Chem Res. 2016;55(36):9557–9577.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–356.
  • Singh S, Nalwa HS. Nanotechnology and health safety-toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol. 2007;7(9):3048–3070.
  • Uppal S, Italiya KS, Chitkara D, et al. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomater. 2018;81:20–42.
  • Shi Y, Sun X, Zhang L, et al. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci Rep. 2018;8:1–9.
  • Yeh TH, Hsu LW, Tseng MT, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164–6173.
  • El-Seedi HR, El-Shabasy RM, Khalifa SAM, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 2019;9(42):24539–24559.
  • Peralta-Videa JR, Huang Y, Parsons JG, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1(1):1–29.
  • Bala N, Saha S, Chakraborty M, et al. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5(7):4993–5003.
  • Sati SC, Kour G, Bartwal AS, et al. Biosynthesis of metal nanoparticles from leaves of Ficus palmata and evaluation of their anti-inflammatory and anti-diabetic activities. Biochemistry. 2020;59(33):3019–3025.
  • Malaikozhundan B, Vinodhini J, Kalanjiam MAR, et al. High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess Biosyst Eng. 2020;43(9):1533–1547.
  • Badeggi UM, Ismail E, Adeloye AO, et al. Green synthesis of gold nanoparticles capped with procyanidins from Leucosidea sericea as potential antidiabetic and antioxidant agents. Biomolecules. 2020;10(3):452.
  • Vijayakumar S, Vinayagam R, Anand MAV, et al. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Technol. 2020;58:101786.
  • Li W, Wan H, Yan S, et al. Gold nanoparticles synthesized with Poria cocos modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. Arab J Chem. 2020;13(7):5966–5977.
  • Guo Y, Jiang N, Zhang L, et al. Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its anti-diabetic activity on streptozotocin induced rats. Arab J Chem. 2020;13(4):5096–5106.
  • Opris R, Tatomir C, Olteanu D, et al. The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf B Biointerfaces. 2017;150:192–200.
  • Saipriya PD. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed. 2012;7:1189.
  • Khaleel Basha S, Govindaraju K, Manikandan R, et al. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces. 2010;75(2):405–409.
  • Kumar V, Singh S, Srivastava B, et al. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng. 2019;7(3):103094.
  • Balan K, Qing W, Wang Y, et al. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv. 2016;6(46):40162–40168.
  • Antonysamy Johnson MA, Shibila T, Amutha S, et al. Synthesis of silver nanoparticles using Odontosoria chinensis (L.) J. Sm. and evaluation of their biological potentials. Pharmaceuticals. 2020;13(4):66–10.
  • El Shafey AM. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process Synth. 2020;9(1):304–339.
  • Noor S, Shah Z, Javed A, et al. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J Microbiol Methods. 2020;174:105966.
  • Popli D, Anil V, Subramanyam AB, et al. Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol. 2018;46(sup1):676–683.
  • Maity S, Chakraborti AS. Formulation, physico-chemical characterization and antidiabetic potential of naringenin-loaded poly d, l lactide-co-glycolide (N-PLGA) nanoparticles. Eur Polym J. 2020;134:109818.
  • Maity S, Mukhopadhyay P, Kundu PP, et al. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals – an in vitro and in vivo approach. Carbohydr Polym. 2017;170:124–132.
  • Perumal V, Manickam T, Bang KS, et al. Antidiabetic potential of bioactive molecules coated chitosan nanoparticles in experimental rats. Int J Biol Macromol. 2016;92:63–69.
  • Sampathkumar K, Riyajan S, Tan CK, et al. Small-intestine-specific delivery of antidiabetic extracts from Withania coagulans using polysaccharide-based enteric-coated nanoparticles. ACS Omega. 2019;4(7):12049–12057.
  • Abdel-Moneim A, El-Shahawy A, Yousef AI, et al. Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: in silico, in vitro and in vivo approaches. Int J Biol Macromol. 2020;154:1496–1504.
  • Panwar R, Raghuwanshi N, Srivastava AK, et al. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C. 2018;92:381–392.
  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, et al. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12(1):143–161.
  • Ahangarpour A, Oroojan AA, Khorsandi L, et al. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxid Med Cell Longev. 2018;2018:7496936.
  • Odei-Addo F, Shegokar R, Müller RH, et al. Nanoformulation of Leonotis leonurus to improve its bioavailability as a potential antidiabetic drug. 3 Biotech. 2017;7(5):1–9.
  • Piazzini V, Micheli L, Luceri C, et al. Nanostructured lipid carriers for oral delivery of silymarin: improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int J Pharm. 2019;572:118838.
  • Wang Z, Wu J, Zhou Q, et al. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice, evidence-based complement. Evid Based Complement Alternat Med. 2015;2015:239749.
  • Mishra SB, Kumari N. Engineering of crystalline nano-suspension of lycopene for potential management of oxidative stress-linked diabetes in experimental animals. BioNanoSci. 2021;11(2):345–354.
  • Singh AK, Pandey H, Ramteke PW, et al. Nano-suspension of ursolic acid for improving oral bioavailability and attenuation of type II diabetes: a histopathological investigation. Biocatal Agric Biotechnol. 2019;22:101433.
  • Gaur PK. Nanosuspension of flavonoid-rich fraction from Psidium guajava Linn for improved type 2-diabetes potential. J Drug Deliv Sci Technol. 2021;62:102358.
  • Tiarks F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir. 2001;17(3):908–918.
  • Lammari N, Froiio F, Louaer M, et al. Poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammoniethyl methacrylate chloride) (Eudragit RS100) nanocapsules as nanovector carriers for Phoenix dactylifera L. seeds oil: a versatile antidiabetic agent. Biomacromolecules. 2020;21(11):4442–4456.
  • Rani R, Dahiya S, Dhingra D, et al. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact. 2018;295:119–132.
  • Brayer GD, Luo Y, Withers SG. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995;4(9):1730–1742.
  • Doupis J, Veves A. DPP4 inhibitors: a new approach in diabetes treatment. Adv Ther. 2008;25(7):627–643.
  • Xing J, Li Q, Zhang S, et al. Identification of dipeptidyl peptidase IV inhibitors: virtual screening, synthesis and biological evaluation. Chem Biol Drug Des. 2014;84(3):364–377.
  • Vijayakumar S, Divya M, Vaseeharan B, et al. biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): a potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J Inorg Organomet Polym Mater. 2020;31(2):624–635.
  • Charron MJ, Kahn BB. Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells in vivo. J Biol Chem. 1990;265(14):7994–8000.
  • Dimitriadis G, Mitron P, Lambadiari V, et al. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011;93:52–59.
  • Rajarajeshwari T, Shivashri C, Rajasekar P. Synthesis and characterization of biocompatible gymnemic acid-gold nanoparticles: a study on glucose uptake stimulatory effect in 3T3-L1 adipocytes. RSC Adv. 2014;4(108):63285–63295.
  • Juhl K, Hutton J. Stimulus-secretion coupling in the pancreatic beta-cell. Adv Exp Med Biol. 2004;552:66–90.
  • Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216–226.
  • Shanker K, Naradala J, Mohan GK, et al. A sub-acute oral toxicity analysis and comparative: in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. RSC Adv. 2017;7(59):37158–37167.
  • Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, et al. A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Mater Sci Eng C Mater Biol Appl. 2019;97:397–405.
  • Zang L, Shimada Y, Nishimura N. Development of a novel zebrafish model for type 2 diabetes mellitus. Sci Rep. 2017;7:1–11.
  • Jeyabharathi S, Chandramohan S, Naveenkumar S, et al. Synergistic effects of herbal zinc oxide nanoparticles (ZnONPs) and its anti-hyperglycemic and anti-bacterial effects. Mater Today Proc. 2020;36:390–396.
  • Campoy AHG, Gutierrez RMP, Manriquez-Alvirde G, et al. Protection of silver nanoparticles using Eysenhardtia polystachya in peroxide-induced pancreatic β-cell damage and their antidiabetic properties in zebrafish. Int J Nanomed. 2018;13:2601–2612.
  • Rahimi HR, Mohammadpour AH, Dastani M, et al. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J Phytomed. 1967;6:567–577.
  • Asadi S, Gholami MS, Siassi F, et al. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: a randomized double-blind placebo- controlled clinical trial. Complement Ther Med. 2019;43:253–260.
  • Veiseh O, Tang BC, Whitehead KA, et al. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov. 2015;14(1):45–57.
  • Bayrami A, Haghgooie S, Rahim Pouran S, et al. Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Adv Powder Technol. 2020;31(5):2110–2118.
  • Zhang L, Chu W, Zheng L, et al. Zinc oxide nanoparticles from Cyperus rotundus attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ-induced diabetic rats. J Biochem Mol Toxicol. 2020;34:1–9.
  • Shwetha UR, Latha MS, Rajith Kumar CR, et al. Facile synthesis of zinc oxide nanoparticles using novel Areca catechu leaves extract and their in vitro antidiabetic and anticancer studies. J Inorg Organomet Polym. 2020;30(12):4876–4883.
  • Rehana D, Mahendiran D, Kumar RS, et al. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng. 2017;40(6):943–957.
  • Rajakumar G, Thiruvengadam M, Mydhili G, et al. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng. 2018;41(1):21–30.
  • Bayrami A, Parvinroo S, Habibi-Yangjeh A, et al. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol. 2018;46(4):730–739.
  • Avwioroko OJ, Anigboro AA, Atanu FO, et al. Investigation of the binding interaction of α-amylase with Chrysophyllum albidum seed extract and its silver nanoparticles: a multi-spectroscopic approach. Chem Data Collect. 2020;29:100517.
  • Saratale GD, Saratale RG, Kim DS, et al. Exploiting fruit waste grape pomace for silver nanoparticles synthesis, assessing their antioxidant, antidiabetic potential and antibacterial activity against human pathogens: a novel approach. Nanomaterials. 2020;10(8):1457–1418.
  • Mahmoudi F, Mahmoudi F, Gollo KH, et al. Biosynthesis of novel silver nanoparticles using Eryngium thyrsoideum Boiss extract and comparison of their antidiabetic activity with chemical synthesized silver nanoparticles in diabetic rats. Biol Trace Elem Res. 2020;199:1967–1978.
  • Das G, Patra JK, Shin HS. Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Mater Sci Eng C Mater Biol Appl. 2020;114:111011.
  • Das G, Patra JK, Debnath T, et al. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One. 2019;14(8):e0220950.
  • Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci. 2020;27(9):2410–2419.
  • Gao H, Tayebee R, Abdizadeh MF, et al. The efficient biogeneration of Ag and NiO nanoparticles from VPLE and a study of the anti-diabetic properties of the extract. RSC Adv. 2020;10(5):3005–3012.
  • Malapermal V, Botha I, Krishna SBN, et al. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci. 2017;24(6):1294–1305.
  • Govindappa M, Hemashekhar B, Arthikala MK, et al. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys. 2018;9:400–408.
  • Johnson P, Krishnan V, Loganathan C, et al. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. Artif Cells Nanomed Biotechnol. 2018;46(7):1488–1494.
  • Saratale GD, Saratale RG, Benelli G, et al. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci. 2017;28(3):1709–1727.
  • Anbazhagan P, Murugan K, Jaganathan A, et al. Mosquitocidal, antimalarial and antidiabetic potential of Musa paradisiaca-synthesized silver nanoparticles: in vivo and in vitro approaches. J Clust Sci. 2017;28(1):91–107.
  • Prabhu S, Vinodhini S, Elanchezhiyan C, et al. Evaluation of antidiabetic activity of biologically synthesized silver nanoparticles using Pouteria sapota in streptozotocin-induced diabetic rats. J Diabetes. 2018;10(1):28–42.
  • Sengottaiyan A, Aravinthan A, Sudhakar C, et al. Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J Nanostruct Chem. 2016;6(1):41–48.
  • Jini D, Sharmila S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater Today Proc. 2020;22:432–438.
  • Maheshwaran G, Nivedhitha Bharathi A, Malai Selvi M, et al. Green synthesis of silver oxide nanoparticles using Zephyranthes rosea flower extract and evaluation of biological activities. J Environ Chem Eng. 2020;8(5):104137.
  • Hou H, Mahdavi B, Paydarfard S, et al. Novel green synthesis and antioxidant, cytotoxicity, antimicrobial, antidiabetic, anticholinergics, and wound healing properties of cobalt nanoparticles containing Ziziphora clinopodioides Lam leaves extract. Sci Rep. 2020;10:1–19.
  • Deng W, Wang H, Wu B, et al. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B. 2019;9(1):74–86.
  • Liu Y, Zeng S, Liu Y, et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol. 2018;114:632–639.
  • Ammulu MA, Vinay Viswanath K, Giduturi AK, et al. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox. b heartwood extract and its biomedical applications. J Genet Eng Biotechnol. 2021;19(1):1–18.
  • Shao T, Yuan P, Zhu L, et al. Carbon nanoparticles inhibit α-glucosidase activity and induce a hypoglycemic effect in diabetic mice. Molecules. 2019;24(18):3257.
  • Karunanidhi P, Verma N, Kumar DN, et al. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech. 2021;22(5):1–14.
  • Varadharaj V, Ramaswamy A, Sakthivel R, et al. Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: an in vitro study. J Clust Sci. 2020;31(6):1257–1266.
  • Manne AA, Arigela B, Giduturi AK, et al. Pterocarpus marsupium Roxburgh heartwood extract/chitosan nanoparticles loaded hydrogel as an innovative wound healing agent in the diabetic rat model. Mater Today Commun. 2021;26:101916.
  • Prada AL, Keita H, de Souza TP, et al. Cassia grandis Lf nanodispersion is a hypoglycemic product with a potent α-glucosidase and pancreatic lipase inhibitor effect. Saudi Pharm J. 2019;27(2):191–199.
  • Ammar NM, Hassan HA, Mohammed MA, et al. Metabolomic profiling to reveal the therapeutic potency of Posidonia oceanica nanoparticles in diabetic rats. RSC Adv. 2021;11(14):8398–8410.
  • Setyawati A, Rizqi NC, Putri CA. Nanoemulsifying of ethanolic paitan leaf extract (Tithonia diversifolia (Hemsley) A. Gray) to enhanced antioxidant and antidiabetic properties. RJC. 2021;14(2):981–987.
  • Jain A, Dasgupta N, Ranjan S, et al. Whey protein based electrosprayed nanospheres for encapsulation and controlled release of bioactive compounds from Tinospora cordifolia extract. Innov Food Sci Emerg Technol. 2021;69:102671.
  • Xue M, Yang M, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomed. 2013;8:4677.
  • Wang T, Wang N, Song H, et al. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur J Pharm Sci. 2011;44(1–2):127–135.
  • Xu HY, Liu CS, Huang CL, et al. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces. 2019;181:927–934.
  • Yu F, Li Y, Chen Q, et al. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm. 2016;103:136–148.
  • Yin J, Hou Y, Yin Y, et al. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int J Nanomed. 2017;12:8671–8680.
  • El-Far YM, Zakaria MM, Gabr MM, et al. Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine. 2017;12(14):1689–1711.
  • Gouda W, Hafiz NA, Mageed L, et al. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bull. Natl. Res. Cent. 2019;43(1):1–10.
  • Abu-Taweel GM, Attia MF, Hussein J, et al. Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomed Pharmacother. 2020;131:110688.
  • Ravichandran R. Studies on gymnemic acids nanoparticulate formulations against diabetes mellitus. Int J Biomed Clin Eng. 2013;1:1–12.
  • Zhao X, Wang W, Zu Y, et al. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation. Drug Deliv. 2014;21(6):467–479.
  • Chitkara D, Nikalaje SK, Mittal A, et al. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res. 2012;2(2):112–123.
  • Singh J, Mittal P, Vasant Bonde G, et al. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S546–S555.
  • Mukhopadhyay P, Maity S, Mandal S, et al. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym. 2018;182:42–51.
  • Amjadi S, Mesgari Abbasi M, Shokouhi B, et al. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J Funct Foods. 2019;59:119–128.
  • Mohseni R, ArabSadeghabadi Z, Ziamajidi N, et al. Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res Lett. 2019;14(1):1–9.
  • Kozuka C, Shimizu-Okabe C, Takayama C, et al. Marked augmentation of plga nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017;24(1):558–568.
  • Mishra SB, Malaviya J, Mukerjee A. Attenuation of oxidative stress and glucose toxicity by lutein loaded nanoparticles from Spinacia oleracea leaves. J Pharmaceut Sci Pharmacol. 2015;2(3):242–249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.