606
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles

, , , , , , & show all
Pages 2028-2045 | Received 23 May 2021, Accepted 07 Jul 2021, Published online: 29 Jul 2021

References

  • Cai Y, Liang P, Tang Q, et al. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano. 2017;11(1):1054–1063.
  • Yang G, Xu L, Xu J, et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 2018;18(4):2475–2484.
  • Liu N, Zhu M, Niu N, et al. Aza-BODIPY probe-decorated mesoporous black TiO2 nanoplatform for the highly efficient synergistic phototherapy. ACS Appl Mater Interfaces. 2020;12(37):41071–41078.
  • Liu T-M, Conde J, Lipiński T, et al. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Prog Mater Sci. 2017;88:89–135.
  • Turksoy A, Yildiz D, Akkaya EU. Photosensitization and controlled photosensitization with BODIPY dyes. Coord Chem Rev. 2019;379:47–64.
  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119(8):4881–4985.
  • Gao D, Zhang B, Liu Y, et al. Molecular engineering of near-infrared light-responsive BODIPY-based nanoparticles with enhanced photothermal and photoacoustic efficiencies for cancer theranostics. Theranostics. 2019;9(18):5315–5331.
  • Stanislaw K, Bartosz K, Dawid P, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107.
  • Zhou Z, Song J, Nie L, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597–6626.
  • Lv W, Zhang Z, Zhang KY, et al. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew Chem Int Ed Engl. 2016;55(34):9947–9951.
  • Deng L, Sheng D, Liu M, et al. A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomater Sci. 2020;8(3):858–870.
  • Zhang W, Lin W, Wang X, et al. Hybrid nanomaterials of conjugated polymers and albumin for precise photothermal therapy. ACS Appl Mater Interfaces. 2019;11(1):278–287.
  • Zhang W, Lin W, Li C, et al. Rational design of BODIPY-diketopyrrolopyrrole conjugated polymers for photothermal tumor ablation. ACS Appl Mater Interfaces. 2019;11(36):32720–32728.
  • Li L, Chen C, Liu H, et al. Multifunctional carbon-silica nanocapsules with gold core for synergistic photothermal and chemo-cancer therapy under the guidance of bimodal imaging. Adv Funct Mater. 2016;26(24):4252–4261.
  • Tang Q, Si W, Huang C, et al. An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. J Mater Chem B. 2017;5(8):1566–1573.
  • Gao C, Jian J, Lin Z, et al. Hypericin-loaded carbon nanohorn hybrid for combined photodynamic and photothermal therapy in vivo. Langmuir. 2019;35(25):8228–8237.
  • Poinard B, Neo SZY, Yeo ELL, et al. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl Mater Interfaces. 2018;10(25):21125–21136.
  • Thakur NS, Patel G, Kushwah V, et al. Self assembled gold nanoparticle-lipid nanocomposites for on-demand delivery, tumor accumulation, and combined photothermal-photodynamic therapy. ACS Appl Bio Mater. 2019;2(1):349–361.
  • Chen J, Ning C, Zhou Z, et al. Nanomaterials as photothermal therapeutic agents. Prog Mater Sci. 2019;99:1–26.
  • Wei W, Zhang X, Zhang S, et al. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Mater Sci Eng C Mater Biol Appl. 2019;104:109891.
  • Gai S, Yang G, Yang P, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today. 2018;19:146–187.
  • Liu Y, Song N, Chen L, et al. Synthesis of a Near-Infrared BODIPY Dye for Bioimaging and Photothermal Therapy . Chem Asian J. 2018;13(8):989–995.
  • Zhao R, Cao J, Yang X, et al. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomater Sci. 2021;9(13):4568–4590.
  • O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009 Sep-Oct;85(5):1053–1074.
  • Li X, Kim C, Lee S, et al. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy. J Am Chem Soc. 2017;139(31):10880–10886.
  • Kamkaew A, Lim SH, Lee HB, et al. BODIPY dyes in photodynamic therapy. Chem Soc Rev. 2013;42(1):77–88.
  • Zhao Z, Shi S, Huang Y, et al. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser. ACS Appl Mater Interfaces. 2014;6(11):8878–8885.
  • Wang J, Zhong Y, Wang X, et al. pH-dependent assembly of porphyrin-silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett. 2017;17(11):6916–6921.
  • Zhang Y, Wang B, Zhao R, et al. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020;115:111099.
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146.
  • Zhang Q, Cai Y, Wang XJ, et al. Targeted photodynamic killing of breast cancer cells employing heptamannosylated β-Cyclodextrin-Mediated Nanoparticle Formation of an Adamantane-Functionalized BODIPY Photosensitizer. ACS Appl Mater Interfaces. 2016;8(49):33405–33411.
  • Sun W, Zhao X, Fan J, et al. Boron dipyrromethene nano-photosensitizers for anticancer phototherapies. Small. 2019;15(32):1804927.
  • Zhang Q, Wang X, Li PZ, et al. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater. 2014;24(17):2450–2461.
  • Zhang Y, Zhao R, Jia L, et al. Hierarchical nano-to-molecular disassembly of boron dipyrromethene nanoparticles for enhanced tumor penetration and activatable photodynamic therapy. Biomaterials. 2021;275:120945.
  • Knopf-Marques H, Pravda M, Wolfova L, et al. Hyaluronic acid and its derivatives in coating and delivery systems: Applications in tissue engineering, regenerative medicine and immunomodulation. Adv Healthc Mater. 2016;5(22):2841–2855.
  • Sakulwech S, Lourith N, Ruktanonchai U, et al. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J Pharm Sci. 2018;13(5):498–504.
  • Cai J, Fu J, Li R, et al. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym. 2019;208:356–364.
  • Hu C, Cun X, Ruan S, et al. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials. 2018;168:64–75.
  • Ren Q, Liang Z, Jiang X, et al. Enzyme and pH dual-responsive hyaluronic acid nanoparticles mediated combination of photodynamic therapy and chemotherapy. Int J Biol Macromol. 2019;130:845–852.
  • Liu Y, Wei C, Lin A, et al. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer. Colloids Surf B Biointerfaces. 2020;189(1):110820.
  • Yan J, Sun H, Li J, et al. A theranostic plaster combining photothermal therapy and photodynamic therapy based on chlorin e6/gold nanorods (Ce6/Au nrs) composite. Colloids and Surfaces A. 2018;537:460–466.
  • Shi Y, Liu S, Liu Y, et al. Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy. ACS Appl Mater Interfaces. 2019;11(13):12321–12326.
  • Xing Y, Ding T, Wang Z, et al. Temporally Controlled Photothermal/Photodynamic and Combined Therapy for Overcoming Multidrug Resistance of Cancer by Polydopamine Nanoclustered Micelles. ACS Appl Mater Interfaces. 2019;11(15):13945–13953.
  • Zhang Q, Cai Y, Li QY, et al. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry. 2017;23(57):14307–14315.
  • Crescenzi V, Cornelio L, Meo CD, et al. Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules. 2007;8(6):1844–1850.
  • Ren W, Yan Y, Zeng L, et al. A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv Healthc Mater. 2015;4(10):1526–1536.
  • Tian J, Zhou J, Shen Z, et al. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem Sci. 2015;6(10):5969–5977.
  • Chen ZX, Liu MD, Zhang MK, et al. Interfering with lactate-fueled respiration for enhanced photodynamic tumor therapy by a porphyrinic MOF nanoplatform. Adv Funct Mater. 2018;28(36):1803498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.