495
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Recent update of 3D printing technology in pharmaceutical formulation development

, , , , ORCID Icon, , ORCID Icon & show all
Pages 2306-2330 | Received 19 Jun 2021, Accepted 10 Aug 2021, Published online: 26 Aug 2021

References

  • Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: Recent progress and application. Curr Pharm Des. 2018;24(42):5039–5048.
  • Trenfield SJ, Awad A, Madla CM, et al. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081.
  • Chua CK, Leong KFJ. An introduction to rapid prototyping of biomaterials. In: Rapid Prototyp. Biomater. Tech. Addit. Manuf. Elsevier; 2019. p. 1–15.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307.
  • Bapat RA, Chaubal TV, Dharmadhikari S, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586:119596.
  • Pandey D, Kesharwani P, Jain D. Entrapment of drug-sorbate complex in submicron emulsion: a potential approach to improve antimicrobial activity in bacterial corneal infection. J Drug Deliv Sci Technol. 2019;49:455–462.
  • Shukla R, Singh A, Pardhi V, et al. Dendrimer-based nanoparticulate delivery system for cancer therapy. In: Polym. Nanoparticles as a Promis. Tool Anti-Cancer Ther. Elsevier; 2019. p. 233–255.
  • Meher JG, Chaurasia M, Singh A, et al. Carbon nanotubes (CNTs): a novel drug delivery tool in brain tumor treatment, nanotechnology-based target. Drug Deliv Syst Brain Tumors. 2018:375–396.
  • Madheswaran T, Baskaran R, Yoo BK, et al. In vitro and in vivo skin distribution of 5α-Reductase inhibitors loaded into liquid crystalline nanoparticles. J Pharm Sci. 2017;106(11):3385–3394.
  • Kesharwani P, Amin MCIM, Giri N, et al. Dendrimers in targeting and delivery of drugs. In: Nanotechnology-based approaches target. Deliv. Drugs genes. Elsevier Inc., 2017. pp. 363–388.
  • Gorain B, Rajeswary DC, Pandey M, et al. Nose to brain delivery of nanocarriers towards attenuation of demented condition. Curr Pharm Des. 2020;26:2233–2246.
  • Tripathi PK, Gupta S, Rai S, et al. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm. 2020;46:1–46.
  • Gorain B, Bhattamishra SK, Choudhury H, et al. Overexpressed receptors and proteins in lung cancer, nanotechnology-based target. Drug Deliv Syst Lung Cancer. 2019:39–75.
  • Chen D, Xu XY, Li R, et al. Preparation and in vitro evaluation of FDM 3D-printed ellipsoid-shaped gastric floating tablets with low infill percentages. AAPS PharmSciTech. 2019;21(1):6.
  • Khaled SA, Burley JC, Alexander MR, et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1-2):105–111.
  • Hammou RA, Benhassou M, Ennaji MM. Application of nanodiagnostics in viral infectious diseases. In: Emerging and Reemerging Viral Pathogens; Academic Press 2019. vol. 2.
  • Jacob S, Nair AB, Patel V, Shah J. 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech. 2020;21: 220.
  • Günther D, Heymel B, Günther JF, et al. Continuous 3D-printing for additive manufacturing. J Rapid Prototyp. 2014;20(4):320–327.
  • Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102.
  • B.O. G.*, G. V. S., S.B. K., D.R. C., G.S. A., G.P. S. 3D printing & pharmaceutical manufacturing: Opportunities and challenges. IJB. 2016;5:4723.
  • Aho J, Bøtker JP, Genina N, et al. Roadmap to 3D-Printed oral pharmaceutical dosage forms: Feedstock filament properties and characterization for fused deposition Modeling. J Pharm Sci. 2019;108(1):26–35.
  • Venkataraman N, Rangarajan S, Matthewson MJ, et al. Feedstock material property - Process relationships in fused deposition of ceramics (FDC). J Rapid Prototyp. 2000;6(4):244–252.
  • Nasereddin JM, Wellner N, Alhijjaj M, et al. Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharm Res. 2018;35:1–3.
  • Melocchi A, Parietti F, Maroni A, et al. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1-2):255–263.
  • Fuenmayor E, Forde M, Healy AV, et al. Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics. 2018;10:1–27.
  • Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm. 2016;108:111–125.
  • Korte C, Quodbach J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol. 2018;23(10):1117–1127.
  • Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1-2):161–170.
  • Zhang J, Feng X, Patil H, et al. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1-2):186–197.
  • Prasad E, Islam MT, Goodwin DJ, et al. Development of a hot-melt extrusion (HME) process to produce drug loaded AffinisolTM 15LV filaments for fused filament fabrication (FFF) 3D printing. Addit Manuf. 2019;29:100776.
  • Beck RCR, Chaves PS, Goyanes A, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1-2):268–279.
  • Goyanes A, Chang H, Sedough D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–420.
  • Matijašić G, Gretić M, Kezerić K, et al. Preparation of filaments and the 3D printing of dronedarone HCl tablets for treating cardiac arrhythmias. AAPS PharmSciTech. 2019;20(8):310–313.
  • Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–387.
  • Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr Polym. 2017;177:49–57.
  • Kadry H, Al-Hilal TA, Keshavarz A, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption. Int J Pharm. 2018;544(1):285–296.
  • Korte C, Quodbach J. 3D-Printed network structures as Controlled-Release drug delivery systems: Dose adjustment, API release analysis and prediction. AAPS PharmSciTech. 2018;19(8):3333–3342.
  • Saviano M, Aquino RP, Del Gaudio P, et al. Poly(vinyl alcohol) 3D printed tablets: the effect of polymer particle size on drug loading and process efficiency. Int. J. Pharm. 2019;561:1–8.
  • Eleftheriadis GK, Ritzoulis C, Bouropoulos N, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180–192.
  • Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, et al. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164–171.
  • Kollamaram G, Croker DM, Walker GM, et al. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1-2):144–152.
  • Öblom H, Zhang J, Pimparade M, et al. 3D-Printed isoniazid tablets for the treatment and prevention of tuberculosis-personalized dosing and drug release. AAPS PharmSciTech. 2019;20(2):52.
  • Sadia M, Isreb A, Abbadi I, et al. From 'fixed dose combinations' to 'a dynamic dose combiner': 3D printed bi-layer antihypertensive tablets . Eur J Pharm Sci. 2018;123:484–494.
  • Isreb A, Baj K, Wojsz M, et al. 3D printed oral theophylline doses with innovative 'radiator-like' design: Impact of polyethylene oxide (PEO) molecular weight. Int J Pharm. 2019;564:98–105.
  • Dumpa NR, Bandari S, Repka MA. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 2020;12(1):52.
  • Jamróz W, Kurek M, Szafraniec-Szczęsny J, et al. Speed it up, slow it down…an issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci. 2020;143:105169.
  • Ichiro Kimura S, Ishikawa T, Iwao Y, et al. Fabrication of zero-order sustained-release floating tablets via fused depositing modeling 3D printer. Chem Pharm Bull (Tokyo). 2019;67(9):992–999.
  • Pereira RF, Bártolo PJ. 3D photo-fabrication for tissue engineering and drug delivery. Engin. 2015;1(1):090–112.
  • Selimis A, Mironov V, Farsari M. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron Eng. 2015;132:83–89.
  • Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomater. 2010;31(24):6121–6130.
  • Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349–1352.
  • Wang J, Goyanes A, Gaisford S, et al. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1-2):207–212.
  • Goyanes A, Det-Amornrat U, Wang J, et al. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–48.
  • Ali Z, Türeyen EB, Karpat Y, et al. Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Procedia CIRP. 2016;42:87–90.
  • Martinez PR, Goyanes A, Basit AW, et al. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–317.
  • Healy AV, Fuenmayor E, Doran P, et al. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics. 2019;11:645.
  • Xu X, Robles-Martinez P, Madla CM, et al. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction. Addit Manuf. 2020;33:101071.
  • Robles-Martinez P, Xu X, Trenfield SJ, et al. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11:274.
  • Martinez PR, Goyanes A, Basit AW, et al. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-Printed tablets. AAPS PharmSciTech. 2018;19(8):3355–3361.
  • Karakurt I, Aydoğdu A, Çıkrıkcı S, et al. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int J Pharm. 2020;584:119428.
  • Fina F, Madla CM, Goyanes A, et al. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int. J. Pharm. 2018;541(1-2):101–107.
  • Davis DA, Thakkar R, Su Y, et al. Selective laser sintering 3-Dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate. J. Pharm. Sci. 2020;110(4):1432–1443.
  • Allahham N, Fina F, Marcuta C, et al. Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics. 2020;12:110.
  • Fina F, Goyanes A, Gaisford S, et al. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285–293.
  • Fina F, Goyanes A, Madla CM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;547(1-2):44–52.
  • Barakh Ali SF, Mohamed EM, Ozkan T, et al. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing. Int J Pharm. 2019;570:118651.
  • Mohamed EM, Barakh Ali SF, Rahman Z, et al. Formulation optimization of selective laser sintering 3D-Printed tablets of clindamycin palmitate hydrochloride by response surface methodology. AAPS PharmSciTech. 2020;21(6):232.
  • Awad A, Fina F, Goyanes A, et al. 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594.
  • Shi K, Tan DK, Nokhodchi A, et al. Drop-On-Powder 3D printing of tablets with an anti-Cancer drug, 5-Fluorouracil. Pharmaceutics. 2019;11:1–10.
  • Huang W, Zheng Q, Sun W, et al. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1-2):33–38.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–650.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–314.
  • Goyanes A, Robles Martinez P, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–663.
  • Subramanian V, Fréchet JMJ, Chang PC, et al. Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc IEEE. 2005;93(7):1330–1338.
  • Kolakovic R, Viitala T, Ihalainen P, et al. Printing technologies in fabrication of drug delivery systems printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv. 2013;10(12):1711–1723.
  • Preis M, Breitkreutz J, Sandler N. Perspective: Concepts of printing technologies for oral film formulations. Int J Pharm. 2015;494(2):578–584.
  • Ihalainen P, Määttänen A, Sandler N. Printing technologies for biomolecule and cell-based applications. Int J Pharm. 2015;494(2):585–592.
  • Dimitrov D, Schreve K, Beer ND. Advances in three dimensional printing - State of the art and future perspectives. Rapid Prototyp J. 2006;12(3):136–147.
  • Fanous M, Gold S, Hirsch S, et al. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance. Eur J Pharm Sci. 2020;155:105558.
  • Ong JJ, Awad A, Martorana A, et al. 3D printed opioid medicines with alcohol-resistant and abuse-deterrent properties. Int J Pharm. 2020;579:119169.
  • Nukala PK, Palekar S, Patki M, et al. Abuse deterrent immediate release Egg-Shaped tablet (egglets) using 3D printing technology: Quality by design to optimize drug release and extraction. AAPS PharmSciTech. 2019;20(2):80.
  • Awad A, Yao A, Trenfield SJ, et al. 3D printed tablets (printlets) with braille and moon patterns for visually impaired patients. Pharmaceutics. 2020;12:1–14.
  • Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425–432.
  • Luzuriaga MA, Berry DR, Reagan JC, et al. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 2018;18(8):1223–1230.
  • Derakhshandeh H, Aghabaglou F, Mccarthy A, et al. A wirelessly controlled smart bandage with 3D-Printed miniaturized needle arrays. Adv Funct Mater. 2020;1905544:1–11.
  • Long J, Etxeberria AE, Nand AV, et al. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C Mater Biol Appl. 2019;104:109873.
  • Tagami T, Hayashi N, Sakai N, et al. 3D printing of unique water-soluble polymer-based suppository shell for controlled drug release. Int J Pharm. 2019;568:118494.
  • Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110–119.
  • Wallis M, Al-Dulimi Z, Tan DK, et al. 3D printing for enhanced drug delivery: current state-of-the-art and challenges. Taylor & Francis; 2020.
  • Jamróz W, Szafraniec J, Kurek M, et al. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res. 2018;35:1–22.
  • Boon W, van Wee B. Influence of 3D printing on transport: a theory and experts judgment based conceptual model. Transp Rev. 2018;38(5):556–575.
  • Trenfield SJ, Awad A, Goyanes A, et al. 3D printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–451.
  • Vuddanda PR, Alomari M, Dodoo CC, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80–87.
  • Awad A, Trenfield SJ, Goyanes A, et al. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547–1555.
  • Goyanes A, Buanz ABM, Hatton GB, et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–162.
  • Manners-Bell J, Lyon K. The implications of the 3D printing for the global logistics industry. Transport Intelligence Ltd. 2012:1–6.
  • Norman J, Madurawe RD, Moore CMV, et al. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.
  • 3DPrint.com. Astronauts 3D Print the First Medical Supplies in Space, Which Can Also Teach Us More About Healthcare on Earth. Available from: https://3dprint.com/162241/3d-print-medical-supplies-in-space/
  • Chen D, Heyer S, Ibbotson S, et al. Direct digital manufacturing: Definition, evolution, and sustainability implications. J Clean Prod. 2015;107:615–625.
  • Khatri P, Shah MK, Vora N. Formulation strategies for solid oral dosage form using 3D printing technology: a mini-review. J Drug Deliv Sci Technol. 2018;46:148–155.
  • Charan J, Goyal JP, Saxena D. Effect of pollypill on cardiovascular parameters: Systematic review and Meta-analysis. J Cardiovasc Dis Res. 2013;4(2):92–97.
  • Rowe CW, Katstra WE, Palazzolo RD, et al. Multimechanism oral dosage forms fabricated by three dimensional printing(TM). J Control Release. 2000;66(1):11–17.(99)00224-2.
  • Goyanes A, Buanz ABM, Basit AW, et al. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1-2):88–92.
  • Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: A structured review. J Am Pharm Assoc. 2013;53(2):136–44.
  • Mathew E, Pitzanti G, Larrañeta E, et al. Three-dimensional printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12:1–9.
  • Sun Y, Soh S. Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater. 2015;27(47):7847–7853.
  • Alhnan MA, Okwuosa TC, Sadia M, et al. Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm Res. 2016;33(8):1817–1832.
  • Panescu D, Jones DH, inventors; Intuitive Surgical Operations Inc, assignee. Quantitative three-dimensional imaging and printing of surgical implants. United States patent US 10,350,009. 2019 Jul 16.
  • Rogan AR, inventor; JT International SA, assignee. Aerosol guiding device and aerosol generating system comprising said aerosol guiding device. United States patent US 10,349,677. 2019 Jul 16.
  • Hammerer D, Boltz J, inventors; MED EL Elektromedizinische Geraete GmbH, assignee. 3D printed ceramic to metal assemblies for electric feedthroughs in implantable medical devices. United States patent US 10,376,703. 2019 Aug 13.
  • Zegarelli PJ, inventor; Emanate Biomedical Inc, assignee. Oral appliance for delivery of medicaments and/or other substances. United States patent US 10,350,039. 2019 Jul 16.
  • Bernal A, inventor; BIONIKO CONSULTING LLC, assignee. Simulating eye surgery. United States patent US 10,360,815. 2019 Jul 23.
  • Feihuang DE, Li X, Cheng S, inventors; Triastek Inc, assignee. Dosage forms with desired release profiles and methods of designing and making thereof. United States patent US 10,350,822. 2019 Jul 16.
  • Wang J, Cheng YL, Chen YW, Shie MY, inventors; National Tsing Hua University (NTHU), assignee. 3D printable biodegradable polymer composite. United States patent US 10,377,865. 2019 Aug 13.
  • Nieto R, Dominguez Z, inventors; Allergan Inc, assignee. Textured breast implant and methods of making same. United States patent US 10,350,055. 2019 Jul 16.
  • Doshi P, inventor. Medical devices including medicaments and methods of making and using same. United States patent US 10,369,099. 2019 Aug 6.
  • Jun M, Yufei S. A kind of biomaterial and preparation method thereof and the application as bone impairment renovation material. China patent CN109821075A. 2020 Sept 8.
  • Colin LO, Duoss EB, Lenhardt J, Nguyen D, Wilson TS, inventors; Lawrence Livermore National Security LLC, assignee. Three-dimensional printed structural siloxanes having controlled drug release. United States patent application US 16/374,629. 2020 Oct 8.
  • Xiaolin L. Sustained-release microsphere prepared by 3D printing and used for injection of terlipressin acetate and preparation method thereof. China patent CN110585170A. 2019 Dec 20.
  • Corgie SC, Chun MS, Rivera KA, Sanktjohanser MJ, Wong BC, inventors; Zymtronix Catalytic Systems Inc, assignee. Printable magnetic powders and 3d printed objects for bionanocatalyst immobilization. World Intellectual Property Organization WO2020069227A1. 2020 Apr 2.
  • Schmitt F. 3D printing medication method and device in the form of tablet and biological materials. Germany patent DE102019134284A1. 2020 Jul 7.
  • LIM SH, GOH WJ. Three-dimensional printing of personalized pills. World Intellectual Property Organization WO2020145898A1. 2020 Jul 16.
  • Shaoling Y, Lingli C. 3D printed loratadine orally disintegrating tablet and raw material composition. China patent CN112043676A. 2020 Dec 8.
  • Williams CB, WILTS EM. Binders and methods of binder jetting including branched polymer binders and articles made therefrom. World Intellectual Property Organization WO2020198400A1, 2020 Oct 1.
  • Goole JEM, MANINI GJA. 3d printing compositions for modified release pharmaceutical applications. World Intellectual Property Organization WO2020201319A1. 2020 Oct 8.
  • Heuvel KVD. Lactose powder bed three dimensional Printing. World Intellectual Property Organization WO2020234335A1. 2020 Nov 26.
  • Dachtler M, Schlauer A. 3d printing additive method for active ingredient-containing objects. World Intellectual Property Organization WO2020240028A1. 2020 Dec 3.
  • Bo C, Xiaoxue W. 3D-printable polylysine antibacterial hydrogel and preparation method and application thereof. China patent CN112111072A. 2020 Dec 22.
  • Luccia ND. Production of a Patient specific Simulator for Endovascular Aneurysm Repair Training. Identifier NCT02372214. (2014 Mar – 2016 Jul). Available from: https://clinicaltrials.gov/ct2/show/NCT02372214.
  • Yang T. Value of 3D Printing for comprehension of Liver Surgical anatomy. Identifier NCT03153332. (2017 Jul 1 – 2018 Jan 10) Available from: https://clinicaltrials.gov/ct2/show/NCT03153332.
  • ClinicalTrials.gov. Effect on Pre-operative Anxiety of a Personalized Three-dimensional kidney Model Prior to Nephron-sparing Surgery for renal tumor. Identifier NCT03943771. (2019 May 9 -) Available from: https://clinicaltrials.gov/ct2/show/NCT03943771.
  • Su Y. Three-Dimensional Printing of Patient- Specific Titanium Plates in Jaw Surgery: A Pilot Study. Identifier NCT03057223.(2016 Sept 1 – 2021 Apr 6). Available from: https://clinicaltrials.gov/ct2/show/NCT03057223.
  • Witowski J, Application of 3 D Printing in laparoscopic Surgery of Liver tumor. Identifier NCT03744624. (2017 Apr 28 -) Available from: https://clinicaltrials.gov/ct2/show/NCT03744624.
  • Hwang CH. Intermittent Oro-Esophageal tube Feeding Using Individually-Customized 3-Dimensional Printing. Identifier NCT02822456. (2015 Dec – 2020 Dec). Available from: https://clinicaltrials.gov/ct2/show/NCT02822456.
  • Campos RR. Applicability of 3 D Printing and 3D Image Reconstruction in the Planning of Complex Liver Surgery. Identifier NCT03416387. (2017 June 23) Available from: https://clinicaltrials.gov/ct2/show/NCT03416387.
  • National Cheng-Kung University Hospital. An Ankle foot Orthosis Improves Gait Performance and Satisfaction in Stroke Patients. Identifier NCT03965715. (2017 Apr 19 – 2019 Feb 7) Available from: https://clinicaltrials.gov/ct2/show/NCT03965715.
  • Barts & The London NHS Trust. 3D Printed Orthotics in Children adolescents. Identifier NCT03770949. (2018 July 31 – June 2019). Available from: https://clinicaltrials.gov/ct2/show/NCT03770949.
  • Mann M. 3D Printed Models in Mohs micrographic Surgery. Identifier NCT03461965. (2018 Mar 2 – 2019 Jan 25). Available from: https://clinicaltrials.gov/ct2/show/NCT03461965.
  • Green GE. 3D-Printed CPAP Masks for Children with Obstructive Sleep Apneas. Identifier NCT02261857. (2013 Sept – 2017 Sept). Available from: https://clinicaltrials.gov/ct2/show/NCT02261857.
  • Wang Z. Airway Stent Modified With 3 D Printing for Malignant Stricture Involving Carina and Distal Bronchi. Identifier NCT03890575. (2017 Apr 1) Available from: https://clinicaltrials.gov/ct2/show/NCT03890575.
  • Brack AB. Third Trimester 3D Printed Models Versus 3D Ultrasound Effects on Maternal- Fetal Attachment. Identifier NCT03883971. (2018 May 1 – 2019 Mar 1). Available from: https://clinicaltrials.gov/ct2/show/NCT03883971.
  • Meticuly Company Limited. A multicenter clinical trial pilot study of Radial head prosthesis fabricated by 3D printing technique. Identifier TCTR20181008003. (2018 Oct 6 -) Available from: https://www.thaiclinicaltrials.org/export/pdf/TCTR20181008003.
  • Yan T. A randomized cross-over controlled trial for the effects of elbow forearm support on subluxation in patients with brain injury based on 3D printing. Identifier ChiCTR1800018732. (2018 Oct 6 –). Available from: https://www.chictr.org.cn/showprojen.aspx?proj=30698.
  • Seoane-Viaño I, Trenfield SJ, Basit AW, et al. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553–575.
  • Goyanes A, Madla CM, Umerji A, et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-Centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497.
  • Goyanes A, Scarpa M, Kamlow M, et al. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1-2):71–78.
  • Mirza MA, Iqbal Z. 3D printing in pharmaceuticals: Regulatory perspective. Curr Pharm Des. 2018;24(42):5081–5083.
  • Yu DG, Zhu LM, Branford-White CJ, et al. Three-dimensional printing in pharmaceutics: Promises and problems. J Pharm Sci. 2008;97(9):3666–3690.
  • Saroia J, Yanen W, Wei Q, et al. A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-Des Manuf. 2018;1(4):265–279.
  • Kading B, Straub J. Utilizing in-situ resources and 3D printing structures for a manned mars mission. Acta Astronaut. 2015;107:317–326.
  • Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.
  • Elbadawi M, Muñiz Castro B, Gavins FKH, et al. M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm. 2020;590:119837.
  • Elbadawi M, McCoubrey LE, Gavins FKH, et al. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev. 2021;175:113805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.