247
Views
2
CrossRef citations to date
0
Altmetric
Articles

Natural latex serum: characterization and biocompatibility assessment using Galleria mellonella as an alternative in vivo model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 705-726 | Received 21 Sep 2021, Accepted 30 Nov 2021, Published online: 30 Dec 2021

References

  • Freires IA, Sardi JCO, Castro RD, et al. Alternative animal and non-animal models for drug discovery and development: bonus or burden? Pharm Res. 2017;34(4):681–686.
  • Doke SK, Dhawale SC. Alternatives to animal testing: a review. Saudi Pharm J. 2015;23(3):223–229.
  • Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 2016;17(14):1213–1221.
  • Astashkina A, Mann B, Grainger DW. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther. 2012;134(1):82–106.
  • Tseng CL, Peng CL, Huang JY, et al. Gelatin nanoparticles as gene carriers for transgenic chicken applications. J Biomater Appl. 2013;27(8):1055–1065.
  • Gonzalez-Moragas L, Roig A, Laromaine A. C. elegans as a tool for in vivo nanoparticle assessment. Adv Colloid Interface Sci. 2015;219:10–26.
  • Avanesian A, Semnani S, Jafari M. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions? Drug Discov Today. 2009;14(15-16):761–766.
  • Wilson-Sanders SE. Invertebrate models for biomedical research, testing, and education. Ilar J. 2011;52(2):126–152.
  • Chakraborty C, Sharma AR, Sharma G, et al. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotech. 2016;14(1):1–13.
  • Vogel H, Altincicek B, Glöckner G, et al. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genom. 2011;12(1):308– 319.
  • Singkum P, Suwanmanee S, Pumeesat P, et al. A powerful in vivo alternative model in scientific research: Galleria mellonella. Acta Microbiol Immunol Hung. 2019;66(1):31–55.
  • Maekawa LE, Rossoni RD, Barbosa JO, et al. Different extracts of zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella. Braz Dent J. 2015;26(2):105–109.
  • Kavanagh K, Fallon JP. Galleria mellonella larvae as models for studying fungal virulence. Fungal Biol Rev. 2010;24(1-2):79–83.
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4(7):597–603.
  • Wojda I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017;24(3):342–357.
  • Lionakis MS. Drosophila and galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence. 2011;2(6):521–527.
  • Champion OL, Wagley S, Titball RW. Galleria mellonella as a model host for microbiological and toxin research. Virulence. 2016;7(7):840–845.
  • Tsai CJ, Loh JM, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7(3):214–229.
  • Megaw J, Thompson TP, Lafferty RA, et al. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere. 2015;139:197–201.
  • Dolan N, Gavin DP, Eshwika A, et al. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea. Bioorg Med Chem Lett. 2016;26(2):630–635.
  • Maguire R, Duggan O, Kavanagh DK. Evaluation of Galleria mellonella larvae as an in vivo model for assessing the relative toxicity of food preservative agents. Cell Biol Toxicol. 2016;32(3):209–216.
  • Thomas RJ, Hamblin KA, Armstrong SJ, et al. Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. Int J Antimicrob Agents. 2013;41(4):330–336.
  • Ferreira M, Mendonça RJ, Coutinh-Netto J, et al. Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz J Phys. 2009;39(3):564–569.
  • Neves-Junior WFP, Ferreira M, Alves MCO, et al. Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys. 2006;36(2b):586–591.
  • Paulo NM, Lima FG, Siqueira Júnior JT, et al. [Seringueira's latex membrane (Hevea brasiliensis) with and without polylysine 0.1% and marlex mesh for the reconstruction of iatrogenics abdominal wall defects in rats] . Acta Cir Bras. 2005;20(4):305–310.
  • Zimmermann M, Raiser AG, Braga FVA, et al. Natural latex membranes in experimental diaphragmatic hernioplasty in dogs. Arq Bras Med Vet Zootec. 2008;60(6):1476–1483.
  • Domingos ALA, Tucci S, JrGarcia SB, et al. Use of a latex biomembrane for bladder augmentation in a rabbit model: biocompatibility, clinical and histological outcomes. Int Braz j Urol. 2009;35(2):217–226.
  • Araújo MM, Massuda ET, Hyppolito MA. Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree Hevea brasiliensis. Acta Cir Bras. 2012;27(8):566–571.
  • Frade MAC, Cursi IB, Andrade FF, et al. Management of diabetic skin wounds with a natural latex biomembrane. Med Cutan Ibero Lat Am. 2004;32(4):157–162.
  • Rosa SSRF, Rosa MFF, Marques MP, et al. Regeneration of diabetic foot ulcers based on therapy with red LED light and a natural latex biomembrane. Ann Biomed Eng. 2019;47(4):1153–1164.
  • Frade MAC, Valverde RV, Assis RVC, et al. Chronic phlebopathic cutaneous ulcer: a therapeutic proposal. Int J Dermatol. 2001;40(3):238–240.
  • Mrué F, Netto JC, Ceneviva R, et al. Evaluation of the biocompability of new biomembrane. Mat Res. 2004;7(2):277–283.
  • Barros NR, Vieira SCH, Borges FA, et al. Natural rubber latex biodevice as controlled release system for chronic wounds healing. Biomed Phys Eng Express. 2018;4(3):035026.
  • Ereno C, Guimarães SAC, Pasetto S, et al. Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res. 2010;95A(3):932–939.
  • Borges FA, Barros NR, Garms BC, et al. Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci. 2017;134(39):45321.
  • Floriano JF, Barros NR, Cinman JLF, et al. Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment. J Polym Environ. 2018;26(6):2281–2289.
  • Murbach HD, Ogawa GJ, Borges FA, et al. Ciprofloxacin release using natural rubber latex membranes as carrier. Int J Biomater. 2014;2014:157952.
  • Barros NR, Miranda MCR, Borges FA, et al. Oxytocin sustained release using natural rubber latex membranes. Int J Pept Res Ther. 2016;22(4):435–444.
  • Morise BT, Chagas ALD, Barros NR, et al. Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment. Int J Polym Mater Polym Biomater. 2019;68(13):788–795.
  • Barros NR, Chagas PAM, Borges FA, et al. Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J Mater. 2015;2015:1–7.
  • Zancanela DC, Funari CS, Herculano RD, et al. Natural rubber latex membranes incorporated with three different types of propolis: Physical-chemistry and antimicrobial behaviours. Mater Sci Eng C Mater Biol Appl. 2019;97:576–582.
  • Floriano JF, Chao VS, Bolognesi LF, et al. Physical, chemical and biological characterization of natural rubber latex membranes loaded with cordia verbenacea DC. Curr Tradit Med. 2018;4(2):140–154.
  • Silva RG, Silva RMG, Miranda MCR, et al. Pedido de Patente de Invenção: BR 10 2017 021753 1. Biomembrana de látex natural incorporada com extrato de Stryphnodendron barbatiman Mart. para o tratamento de úlceras cutâneas, INPI, Brazil Patent Agency, 2017.
  • Marcelino MY, Borges FA, Costa AFM, et al. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiol. 2018;13(3):359–367.
  • Guerra NB, Pegorin GS, Boratto MH, et al. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Mater Sci Eng C Mater Biol Appl. 2021;126:112126– 112118.
  • Mendonça RJ, Maurício VB, Teixeira LB, et al. Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytother Res. 2010;24(5):764–768.
  • Paula JS, Ribeiro VRC, Sampaio RB, et al. Rabbit rubeosis iridis induced by intravitreal latex-derived angiogenic fraction. Curr Eye Res. 2011;36(9):857–859.
  • Arnez MFM, Xavier SP, Faria PEP, et al. Implant osseointegration in circumferential bone defects treated with latex-derived proteins or autogenous bone in dog's mandible. Clin Implant Dent Relat Res. 2012;14(1):135–143.
  • Kotake BGS, Gonzaga MG, Netto JC, et al. Bone repair of critical-sized defects in wistar rats treated with autogenic, allogenic or xenogenic bone grafts alone or in combination with natural latex fraction F1. Biomed Mater. 2018;13(2):025022.
  • Daruliza KM, Lam KL, Yang KL, et al. Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Eur Rev Med Pharmacol Sci. 2011;15(9):1027–1033.
  • Kanokwiroon K, Teanpaisan R, Wititsuwannakul D, et al. Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses. 2008;51(4):301–307.
  • Mubarak A, Ismun A, Razak SBA, et al. Antifungal activity of Hevea brasiliensis fresh latex and rubber processing effluent in relation to polyphenol composition and polyphenol oxidase activity as a possible protection approach against fungal disease. Malays Appl Biol. 2018;47(4):127–133.
  • Miranda MCR, Borges FA, Barros NR, et al. Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids. 2018;50(5):503–511.
  • Borges FA, Filho EDA, Miranda MCR, et al. Natural rubber latex coated with calcium phosphate for biomedical application. J Biomater Sci Polym Ed. 2015;26(17):1256–1268.
  • Cesar MB, Borges FA, Bilck AP, et al. Development and characterization of natural rubber latex and polylactic acid membranes for biomedical application. J Polym Environ. 2020;28(1):220–230.
  • Barros NR, Ahadian S, Tebon P, et al. Highly absorptive dressing composed of natural latex loaded with alginate for exudate control and healing of diabetic wounds. Mater Sci Eng C Mater Biol Appl. 2021;119:111589.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685.
  • Mylonakis E, Moreno R, El Khoury JB, et al. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun. 2005;73(7):3842–3850.
  • Rossoni RD, Barros PP, Mendonça IC, et al. The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris. Front Cell Infect Microbiol. 2020;10:397.
  • Montha S, Suwandittakul P, Poonsrisawat A, et al. Maillard reaction in natural rubber latex: characterization and physical properties of solid natural rubber. Adv Mater Sci Eng. 2016;2016:1–6.
  • Rolere S, Liengprayoon S, Vaysse L, et al. Investigating natural rubber composition with fourier transform infrared (FT-IR) spectroscopy: a rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polym Testing. 2015;43:83–93.
  • Tahir H, Misran M. Natural rubber latex (NRL) waste protein purified at various pH condition and metal extraction studies. J Phys: Conf Ser. 2019;1349(1):012062.
  • Kerche-Silva LE, Cavalcante DGSM, Danna CS, et al. Free-radical scavenging properties and cytotoxic activity evaluation of latex C-serum from Hevea brasiliensis RRIM 600. FRA. 2016;7(1):107–114.
  • Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai). 2007;39(8):549–559.
  • Sae-Oui P, Sirisinha C, Sa-Nguanthammarong P, et al. Properties and recyclability of thermoplastic elastomer prepared from natural rubber powder (NRP) and high density polyethylene (HDPE). Polym Testing. 2010;29(3):346–351.
  • Zhang JL, Chen HX, Ke CM, et al. Graft polymerization of styrene onto waste rubber powder and surface characterization of graft copolymer. Polym Bull. 2012;68(3):789–801.
  • Mendonça RJ. Purificação e caracterização de uma proteína angiogênica, indutora de fibroplasia e cicatrizante presente no látex natural da seringueira Hevea brasiliensis [Thesis]. Ribeirão Preto, São Paulo: Faculty of Medicine of Ribeirão Preto, São Paulo University; 2008.
  • Morais PCR. Avaliação do efeito do soro total e de frações obtidas do látex da seringueira (Hevea brasiliensis) na cicatrização de feridas em modelo experimental [Dissertation]. Uberaba, Minas Gerais: Federal University of Triangulo Mineiro; 2017.
  • Silva TV, Barros NR, Costa-Orlandi CB, et al. Voriconazole-natural latex dressings for treating infected candida spp. skin ulcers. Future Microbiol. 2020;15(15):1439–1452.
  • Lima AF, Pegorin GS, Miranda MCR, et al. Ibuprofen-loaded biocompatible latex membrane for drug release: characterization and molecular modeling. J Appl Biomater Funct Mater. 2021;19:1–13.
  • Gemeinder JLP, Barros NR, Pegorin GS, et al. Gentamicin encapsulated within a biopolymer for the treatment of Staphylococcus aureus and Escherichia coli infected skin ulcers. J Biomater Sci Polym Ed. 2021;32(1):93–111.
  • Barros NR, Santos RS, Miranda MCR, et al. Natural latex‐glycerol dressing to reduce nipple pain and healing the skin in breastfeeding women. Skin Res Technol. 2019;25(4):461–468.
  • Barros NR, Miranda MCR, Borges FA, et al. Natural rubber latex: development and in vitro characterization of a future transdermal patch for enuresis treatment. Int J Polym Mater Polym Biomater. 2017;66(17):871–876.
  • Andrade TAM. Modificações teciduais e mecanismos de ação da fração F1 do látex da seringueira Hevea brasiliensis na cicatrização de úlceras cutâneas em ratos diabéticos [Dissertation]. Ribeirão Preto, São Paulo: Faculty of Medicine of Ribeirão Preto, São Paulo University; 2012.
  • Leite MN, Leite SN, Caetano GF, et al. Healing effects of natural latex serum 1% from Hevea brasiliensis in an experimental skin abrasion wound model. An Bras Dermatol. 2020;95(4):418–427.
  • Lee YK, Thong OM, Sunderasan E, et al. Cytotoxicity and genotoxicity of Hevea brasiliensis latex C-serum DCS Sub-fraction as anticancer agents. J Rubber Res. 2020;23(4):273–285.
  • Sansatsadeekul J, Sakdapipanich J, Rojruthai P. Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng. 2011;111(6):628–634.
  • Yeang HY, Arif SA, Yusof F, et al. Allergenic proteins of natural rubber latex. Methods. 2002;27(1):32–45.
  • Presta M, Chiodelli P, Giacomini A, et al. Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther. 2017;179:171–187.
  • Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–178.
  • Abbas AK, Lichtman AH, Pillay S. Cellular and molecular immunology. 9th ed. Philadelphia: Elsevier; 2018.
  • Kavanagh K, Sheehan G. The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi. 2018;4(3):113.
  • Cutuli MA, Petronio GP, Vergalito F, et al. Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence. 2019;10(1):527–541.
  • Correa VLR, Martins JA, Souza TR, et al. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol. 2020;162:1465–1475.
  • Cé R, Silva RC, Trentin DS, et al. Galleria mellonella larvae as an in vivo model to evaluate the toxicity of polymeric nanocapsules. J Nanosci Nanotechnol. 2020;20(3):1486–1494.
  • Piatek M, Sheehan G, Kavanagh K. Utilising Galleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis. 2020;78(8):1–29.
  • Leung MCK, Williams PL, Benedetto A, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci. 2008;106(1):5–28.
  • Liang S, Liu Y, Fu T, et al. A water-soluble and biocompatible polymeric nanolabel based on naphthalimide grafted poly (acrylic acid) for the two-photon fluorescence imaging of living cells and C. elegans. Colloids Surf B Biointerfaces. 2017;1:151–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.