297
Views
3
CrossRef citations to date
0
Altmetric
Articles

Electrospun polysaccharide scaffolds: wound healing and stem cell differentiation

, , , , , & show all
Pages 858-877 | Received 21 Oct 2021, Accepted 27 Dec 2021, Published online: 07 Jan 2022

References

  • Melo JS, Tripathi A, Kumar J, et al. Immobilization: then and now. In: Tripathi A, Melo JS, editors. Immobilization strategies: biomedical, bioengineering and environmental applications. Singapore: Springer Singapore; 2021. p. 1–84.
  • Miao T, Wang J, Zeng Y, et al. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside. Adv Sci (Weinh). 2018;5(4):1700513.
  • McNamara LE, McMurray RJ, Biggs MJ, et al. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;2010:120623.
  • Newman P, Galenano-Niño JL, Graney P, et al. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Sci Rep. 2016;6(1):37909.
  • Rao P, Ghosh T, Krishna S. Extraction and purification of tamarind seed polysaccharide. J Sci Ind Res. 1946;4:705.
  • Sano M, Miyata E, Tamano S, et al. Lack of carcinogenicity of tamarind seed polysaccharide in B6C3F1 mice. Food Chem Toxicol. 1996;34(5):463–467.
  • Pandit AP, Waychal PD, Sayare AS, et al. Carboxymethyl tamarind seed kernel polysaccharide formulated into pellets to target at Colon. IJPER. 2018;52(3):363–373.
  • Aravind S, Joseph MM, Varghese S, et al. Antitumor and immunopotentiating activity of polysaccharide PST001 isolated from the seed kernel of tamarindus indica: an in vivo study in mice. Scientific World J. 2012;2012:1–14.
  • Aravind SR, Joseph MM, Varghese S, et al. Polysaccharide PST001 isolated from the seed kernel of tamarindus indica induces apoptosis in murine cancer cells. Int J Life Sci Pharma Res. 2012;2012:1–14.
  • Sreelekha TT, Vijayakumar T, Ankanthil R, et al. Immunomodulatory effects of a polysaccharide from Tamarindus indica. Anticancer Drugs. 1993;4(2):209–212.
  • Preethi G, Unnikrishnan B, Joseph MM, et al. Biogenic silver nanoparticles embedded polyvinyl alcohol nanofibrous scaffolds avert tumour and bacterial growth. Curr Sci. 2019;116(10):1735–1741.
  • Yoon JJ, Park TG. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res. 2001;55(3):401–408.
  • Tripathi A, Kumar A. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications . Macromol Biosci. 2011;11(1):22–35.
  • Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617–620.
  • Preethi GU, Sreekutty J, Unnikrishnan BS, et al. Doxorubicin eluting microporous polysaccharide scaffolds: an implantable device to expunge tumour. Mater Sci Eng C Mater Biol Appl. 2020;107:110332.
  • Joseph MM, Nair JB, Adukkadan RN, et al. Exploration of biogenic nano-chemobiotics fabricated by silver nanoparticle and galactoxyloglucan with an efficient biodistribution in solid tumor investigated by SERS fingerprinting. ACS Appl Mater Interfaces. 2017;9(23):19578–19590.
  • Bajpai S, Bajpai M, Sharma L. In situ formation of silver nanoparticles in poly (N-isopropyl acrylamide) hydrogel for antibacterial applications. Des Monomers Polym. 2011;14(4):383–394.
  • Preethi GU, Unnikrishnan BS, Sreekutty J, et al. Semi-interpenetrating nanosilver doped polysaccharide hydrogel scaffolds for cutaneous wound healing. Int J Biol Macromol. 2020; 142:712–723.
  • Li C, Mu C, Lin W. Novel hemocompatible nanocomposite hydrogels crosslinked with methacrylated gelatin. RSC Adv. 2016;6(49):43663–43671.
  • Haider A, Kwak S, Gupta KC, et al. Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater. 2015;2015(1):1–10.
  • Lau K, Paus R, Tiede S, et al. Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol. 2009;18(11):921–933.
  • Cha J, Falanga V. Stem cells in cutaneous wound healing. Clin Dermatol. 2007;25(1):73–78.
  • Zhang L, Chan C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Vis. Exp. 2010;(37):e1852.
  • Mathews S, Gupta P, Bhonde R, et al. Chitosan enhances mineralization during osteoblast differentiation of human bone marrow-derived mesenchymal stem cells, by upregulating the associated genes. Cell Prolif. 2011;44(6):537–549.
  • Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–1392.
  • Gopalakrishnan Usha P, Jalajakumari S, Sheela UB, et al. Engineering cartilage graft using mesenchymal stem cell laden polyacrylamide-galactoxyloglucan hydrogel for transplantation. J Biomater Appl. 2021;36(3):541–551.
  • Chong SF, Smith AA, Zelikin AN. Microstructured, functional PVA hydrogels through bioconjugation with oligopeptides under physiological conditions. Small. 2013;9(6):942–950.
  • Tripathi A, Kathuria N, Kumar A. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res A. 2009;90(3):680–694.
  • Tiwari S, Patil R, Bahadur P. Polysaccharide based scaffolds for soft tissue engineering applications. Polymers. 2018;11(1):1.
  • Barua E, Deoghare AB, Deb P, et al., editors. Naturally derived biomaterials for development of composite bone scaffold: a review. IOP Conf Ser: Mater Sci Eng. 2018; 377 (1): 012013.
  • Aravind SR, Joseph MM, George SK, et al. TRAIL-based tumor sensitizing galactoxyloglucan, a novel entity for targeting apoptotic machinery. Int J Biochem Cell Biol. 2015;59:153–166.
  • Burgalassi S, Raimondi L, Pirisino R, et al. Effect of xyloglucan (tamarind seed polysaccharide) on conjunctival cell adhesion to laminin and on corneal epithelium wound healing. Eur J Ophthalmol. 2000;10(1):71–76.
  • Hmadcha A, Martin-Montalvo A, Gauthier BR, et al. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43.
  • Salgado AJ, Reis RL, Sousa N, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–110.
  • Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development. 2013;140(7):1517–1527.
  • Tan Q-W, Tang S-L, Zhang Y, et al. Hydrogel from acellular porcine adipose tissue accelerates wound healing by inducing intradermal adipocyte regeneration. J Invest Dermatol. 2019;139(2):455–463.
  • Alexaki V-I, Simantiraki D, Panayiotopoulou M, et al. Adipose tissue-derived mesenchymal cells support skin reepithelialization through secretion of KGF-1 and PDGF-BB: comparison with dermal fibroblasts. Cell Transplant. 2012;21(11):2441–2454.
  • Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15(9):1285–1292.
  • Xu F, Zhang C, Graves DT. Abnormal cell responses and role of TNF-in impaired diabetic wound healing. BioMed Res Int. 2013;2013:1–9.
  • Serbina NV, Salazar-Mather TP, Biron CA, et al. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19(1):59–70.
  • Mooney DP, O'Reilly M, Gamelli RL. Tumor necrosis factor and wound healing. Ann Surg. 1990;211(2):124–129.
  • Rapala K, Laato M, Niinikoski J, et al. Tumor necrosis factor alpha inhibits wound healing in the rat. Eur Surg Res. 1991;23(5–6):261–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.