390
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and development of biomimetic electrospun sulphonated polyether ether ketone nanofibrous scaffold for bone tissue regeneration applications: in vitro and in vivo study

&
Pages 947-975 | Received 21 Oct 2021, Accepted 02 Jan 2022, Published online: 04 Feb 2022

References

  • Aubin JE, Liu L, Malaval L, et al. Osteoblast and chondroplasty differentiation. Bone. 1995;17(2):S77–S83.
  • Jӓhn K, Bonewald LF. Bone cell biology: osteoclasts, osteoblasts, osteocytes, chapter-1. In Glorieux FH, Pettifor JM, Jüppner H, editors. Pediatric bone. 2nd edition. Kansas City, MO: Academic Press; 2012. p. 1–8.
  • Desiderio V, Tirino V, Papaccio G, et al. Bone defects: molecular and cellular therapeutic targets. Int J Biochem Cell Biol. 2014;51:75–78.
  • Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update, injury. Int J Care Injured. 2005;36(3):S20–S27.
  • Hiromoto S. Corrosion of metallic biomaterials. Woodhead Publ Ser Biomater. 2010;4:99–121.
  • Sánez A, Rivera-Muñoz E, Brostow W, et al. Ceramic biomaterials: an introductory overview. J Mater Educ. 1999;21(5–6):297–306.
  • Carrow JK, Gaharwar AK. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys. 2015;216(3):248–264.
  • Almasi D, Iqbal N, Sadeghi M, et al. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review. Int J Biomater. 2016;2016:8202653.
  • Montero JF, Barbosa LC, Pereira UA, et al. 2016. Chemical, microscopic, and microbiological analysis of a functionalized poly‐ether‐ether‐ketone‐embedding antibiofilm compounds. Journal of Biomedical Materials Research Part A, 104(12):3015–3020.
  • Aravind K, Sangeetha D. Fabrication and in vitro evaluation of sulphonated polyether ether ketone/nano hydroxyapatite composites as bone graft materials. Mater Chem Phys. 2014;147:168–177.
  • Zhao Y, Wong HM, Wang W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34(37):9264–9277.
  • Halim NAA, Hussein MZ, Kandar MK. Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. Int J Nanomed. 2021;16:6477–6496.
  • Liu Y, Huang J, Li H. Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B. 2013;1(13):1826–1834.
  • Siniscalco D, Dutreilh-Colas M, Hjezi Z, et al. Functionalization of hydroxyapatite ceramics: Raman mapping investigation of silanization. Ceramics. 2019;2(2):372–384.
  • Udomluck N, Lee H, Hong S, et al. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci. 2020;520:146311.
  • Jain VP, Chaudhary S, Sharma D, et al. Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur Polym J. 2021;142:110124.
  • Han Y, Wang X, Dai H, et al. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl Mater Interfaces. 2012;4(9):4616–4622.
  • Haider A, Haider S, Han SS, et al. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 2017;7(13):7442–7458.
  • Lee W-H, Loo C-Y, Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;99:929–939.
  • Pan H, Zheng Q, Yang S, et al. Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro. J Biomed Mater Res A. 2014;102(12):4526–4535.
  • Singh P, Srivastava S, Singh SK. Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomater Sci Eng. 2019;5(10):4882–4898.
  • Tham DQ, Huynh MD, Linh NTD, et al. PMMA bone cements modified with silane-treated and PMMA-grafted hydroxyapatite nanocrystals: preparation and characterization. Polymers. 2021;13(22):3860.
  • Yadav S, Gangwar S. An investigation of experimental dental restorative composites filled with nano-hydroxyapatite treated with different silanes. Silicon. 2021;13(4):1127–1137.
  • Khan AS, Hussain AN, Sidra L, et al. Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater Sci Eng C Mater Biol Appl. 2017;80:387–396.
  • Pereira MBB, França DB, Araújo RC, et al. Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal. Carbohydr Polym. 2020;236:116036.
  • Kamath MS, Ahmed SSSJ, Dhanasekaran M, et al. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomed. 2014;9(1):183–195.
  • Wang Y-J, Zhao P, Sui B-D, et al. Resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Exp Mol Med. 2018;50(6):1–15.
  • Wang S, Wen S, Shen M, et al. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int J Nanomed. 2011;6:3449–3459.
  • Guhan S, Kumar NA, Sangeetha D. Sulphonated poly ether ether ketone/polyvinyl alcohol/phosphotungstic acid composite membranes for PEM fuel cells. Chinese J Polym Sci. 2009;27(02):157–164.
  • Oktay B, Kayaman-Apohan N, Erdem-Kuruca S. Fabrication of nanofiber mats from electrospinning of functionalized polymers. IOP Conf Ser: Mater Sci Eng. 2014;64:012011. https://doi.org/http://dx.doi.org/10.1088/1757-899X/64/1/012011.
  • Agnes Mary S, Giri Dev VR. 2015. Electrospun herbal nanofibrous wound dressings for skin tissue engineering. The Journal of The Textile Institute, 106(8):886–895.
  • Laçin N, Deveci E. Short-term use of resveratrol in alloplastic graft material applied with calvarial bone defects in rats. Acta Cir Bras. 2019; 34(7):e201900704.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Gulseren G, Ceren Yasa I, Ustahuseyin O, et al. Alkaline phosphatase-mimicking peptide nanofibers for osteogenic differentiation. Biomacromolecules. 2015;16(7):2198–2208. https://doi.org/http://dx.doi.org/10.1021/acs.biomac.5b00593.
  • Park S-H, Kim T-I, Ku Y, et al. Effect of hydroxyapatite-coated nanofibrous membrane on the responses of human periodontal ligament fibroblast. J Ceram Soc Japan. 2008;116(1349):31–35.
  • Kim H, Kim HM, Jang JE, et al. Osteogenic differentiation of bone marrow stem cell in poly(lactic-co-Glycolic acid) scaffold loaded various ratio of hydroxyapatite. Int J Stem Cells. 2013;6(1):67–74.
  • Gaowen Z, Zhentao Z. Organic/inorganic composite membranes for application in DMFC. J Memb Sci. 2005;261(1–2):107–113.
  • Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci: Mater Med. 1997;8(1):1–4.
  • Aravind K, Sangeetha D. Characterization and in vitro studies of sulfonated polyether ether ketone/polyether sulfone/nano hydroxyapatite composite. Int J Polym Mater Polym Biomater. 2015;64(4):220–227.
  • Poornima B, Korrapati PS. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr Polym. 2017;157:1741–1749.
  • Vijayakumar, E., & Sangeetha, D. (2015). A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application. RSC Advances, 5(53):42828–42835.
  • Vijayakumar E, Sangeetha D. Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15/quaternised polysulfone composite membrane for alkaline fuel cell. Microporous Mesoporous Mater. 2016;236:260–268.
  • Elkayar A, Elshazly Y, Assaad M. Properties of hydroxyapatite from bovine teeth. Bone Tissue Regen Insights. 2009;2:31–36.
  • Anitha A, Menon D, Sivanarayanan TB, et al. Bioinspired composite matrix containing HA-silica core–shell nanorods for bone tissue engineering. ACS Appl Mater Interface. 2017;25:1–32.
  • Jaafar J, Ismail AF, Matsuura T, et al. Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC. J Memb Sci. 2011;382(1–2):202–211.
  • Chandrasekar A, Sagadevan S, Dakshnamoorthy A. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int J Phys. Sci. 2013;8(32):16391645.
  • Sadrjahani, M., Gharehaghaji, A. A., & Javanbakht, M. (2017). Aligned electrospun sulfonated polyetheretherketone nanofiber based proton exchange membranes for fuel cell applications. Polymer Engineering & Science, 57(8):789–796.
  • Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, et al. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci. 2006;6(1):70–77.
  • Hassan MI, Sultana N, Hamdan S. Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater. 2014;2014:1–6.
  • Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61(12):1065–1083.
  • Shin SY, Park HN, Kim KH, et al. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol. 2005;76(10):1778–1784.
  • Simi VS, Aishwarya S, Sai Korrapati P, et al. In-vitro biocompatibility and corrosion resistance of electrochemically assembled PPy/TNTA hybrid material for biomedical applications. Appl Surf Sci. 2018;445:320–334..
  • Casarin RC, Casati MZ, Pimentel SP, et al. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats. Int J Oral Maxillofac Surg. 2014;43(7):900–906.
  • Moon DK, Kim BG, Lee AR, et al. Resveratrol can enhance osteogenic differentiation and mitochondrial biogenesis from human periosteum-derived mesenchymal stem cells. J Orthop Surg Res. 2020;15(1):1–10.
  • Babitha S, Annamalai M, Dykas MM, et al. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering. J Tissue Eng Regen Med. 2018;12(4):991–1001.
  • Lo Muzio L, Santarelli A, Orsini G, et al. MG63 and MC3T3-EL osteoblastic cell lines response to raloxifene. Eur J Inflamm. 2013;11(3):797–804.
  • Gregory CA, Grady Gunn W, Peister A, et al. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77–84.
  • Shoba E, Lakra R, Kiran MS, et al. Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed Mater. 2017;12(3):035005.
  • Lakshmanan R, Campbell J, Ukani G, et al. Evaluation of dermal tissue regeneration using resveratrol loaded fibrous matrix in a preclinical mouse model of full-thickness ischemic wound. Int J Pharm. 2019;558:177–186.
  • Li Y, Dånmark S, Edlund U, et al. Resveratrol-conjugated poly-ε-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Acta Biomater. 2011;7(2):751–758.
  • Murgia D, Mauceri R, Campisi G, et al. Advance on resveratrol application in bone regeneration: progress and perspectives for use in oral and maxillofacial surgery. Biomolecules. 2019;9(3):94.
  • Pfefferli C, Jaźwińska A. The art of fin regeneration in zebrafish. Regeneration (Oxf). 2015;2(2):72–83.
  • Sun L, Gu L, Tan H, et al. Effects of 17α‑ethinylestradiol on caudal fin regeneration in zebrafish larvae . Sci Total Environ. 2019;653:10–22.
  • Hale AJ, Kiai A, Sikkens J, et al. Impaired caudal fin-fold regeneration in zebrafish deficient for the tumor suppressor pten. Regeneration (Oxf). 2017;4(4):217–226.
  • Uemoto T, Abe G, Tamura K. Regrowth of zebrafish caudal fin regeneration is determined by the amputated length. Sci Rep. 2020;10(1):649.
  • Varga M, Sass M, Papp D, et al. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ. 2014;21(4):547–556.
  • Cardeira J, Gavaia PJ, Fernández I, et al. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci Rep. 2016;6:39191.
  • Quoseena M, Vuppaladadium S, Hussain S, et al. Functional role of annexins in zebrafish caudal fin regeneration - a gene knockdown approach in regenerating tissue. Biochimie. 2020;175:125–131.
  • Shao J, Chen D, Ye Q, et al. Tissue regeneration after injury in adult zebrafish: the regenerative potential of the caudal fin. Dev Dyn. 2011;240(5):1271–1277.
  • Shibata E, Liu Z, Kawasaki T, et al. Robust and local positional information within a fin ray directs fin length during zebrafish regeneration. Dev Growth Differ. 2018;60(6):354–364.
  • Lebedeva L, Zhumabayeva B, Gebauer T, et al. Zebrafish (Danio rerio) as a model for understanding the process of caudal fin Regeneration. Zebrafish. 2020;17(6):359–372.
  • Wilhelm M, Jeske M, Marschall R, et al. New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H functionalized mesoporous Si-MCM-41 particles. J Memb Sci. 2008;316(1–2):164e75.
  • Wang HY, Ji JH, Zhang W, et al. Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomater. 2009;5(1):279–287.
  • Dai Z, Li Y, Quarles LD, et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 2007;14(12):806–814.
  • Li J, Xin Z, Cai M. 2019. The role of resveratrol in bone marrow‐derived mesenchymal stem cells from patients with osteoporosis. Journal of cellular biochemistry. 120(10):16634–16642.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.