422
Views
1
CrossRef citations to date
0
Altmetric
Article

Transferrin/folate dual-targeting Pluronic F127/poly(lactic acid) polymersomes for effective anticancer drug delivery

, , , & ORCID Icon
Pages 1140-1156 | Received 12 Jan 2022, Accepted 16 Feb 2022, Published online: 25 Feb 2022

References

  • Cai K, He X, Song Z, et al. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J Am Chem Soc. 2015;137(10):3458–3461.
  • Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano. 2018;12(12):11740–11755.
  • Hui Y, Yi X, Hou F, et al. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano. 2019;13(7):7410–7424.
  • Bombelli FB, Webster CA, Moncrieff M, et al. The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncol. 2014;15(1):e22–e32.
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364.
  • Yuan Y, Du C, Sun C, et al. Chaperonin-GroEL as a smart hydrophobic drug delivery and tumor targeting molecular machine for tumor therapy. Nano Lett. 2018;18(2):921–928.
  • Du J, O'Reilly RK. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chem Soc Rev. 2011;40(5):2402–2416.
  • Wang F, Xiao J, Chen S, et al. Polymer vesicles: modular platforms for cancer theranostics. Adv Mater. 2018;30(17):e1705674.
  • Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297(5583):967–973.
  • Lee JS, Feijen J. Biodegradable polymersomes as carriers and release systems for paclitaxel using Oregon Green® 488 labeled paclitaxel as a model compound. J Control Release. 2012;158(2):312–318.
  • Thorat ND, Lemine OM, Bohara RA, et al. Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys. 2016;18(31):21331–21339.
  • Sanson C, Diou O, Thévenot J, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano. 2011;5(2):1122–1140.
  • Tanner P, Baumann P, Enea R, et al. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res. 2011;44(10):1039–1049.
  • Sarfraz M, Afzal A, Yang T, et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics. 2018;10(3):151.
  • Pottanam Chali S, Ravoo BJ. Polymer nanocontainers for intracellular delivery. Angew Chem Int Ed Engl. 2020;59(8):2962–2972.
  • Kauscher U, Holme MN, Björnmalm M, et al. Physical stimuli-responsive vesicles in drug delivery: beyond liposomes and polymersomes. Adv Drug Deliv Rev. 2019;138:259–275.
  • Iatridi Z, Angelopoulou A, Voulgari E, et al. Star-graft quarterpolymer-based polymersomes as nanocarriers for co-delivery of hydrophilic/hydrophobic chemotherapeutic agents. ACS Omega. 2018;3(9):11896–11908.
  • Xie S, Gong YC, Xiong XY, et al. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine. 2018;13(19):2527–2544.
  • Xiong XY, Tam KC, Gan LH. Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments. Polymer. 2005;46(6):1841–1850.
  • Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater. 2019;31(19):e1808303.
  • Gao JQ, Lv Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials. 2013;34(22):5628–5639.
  • Miller Kleinhenz J, Guo X, Qian W, et al. Dual-targeting wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62.
  • Lingasamy P, Tobi A, Haugas M, et al. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials. 2019;219:119373.
  • Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updates. 2014;17(4-6):89–95.
  • Kim J, Piao Y, Lee N, et al. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv Mater. 2010;22(1):57–60.
  • Chen Y, Tezcan O, Li D, et al. Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale. 2017;9(29):10404–10419.
  • Gan CW, Feng S-S. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials. 2010;31(30):7748–7757.
  • Li Y, He H, Jia X, et al. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–3908.
  • Singh R, Norret M, House MJ, et al. Dose-dependent therapeutic distinction between active and passive targeting revealed using transferrin-coated PGMA nanoparticles. Small. 2016;12(3):351–359.
  • Jiao Y, Sun Y, Tang X, et al. Tumor-targeting multifunctional rattle-type theranostic nanoparticles for MRI/NIRF bimodal imaging and delivery of hydrophobic drugs. Small. 2015;11(16):1962–1974.
  • van der Meel R, Vehmeijer LJC, Kok RJ, et al. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev. 2013;65(10):1284–1298.
  • Pirollo KF, Nemunaitis J, Leung PK, et al. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a phase 1b study. Mol Ther. 2016;24(9):1697–1706.
  • Siefker Radtke A, Zhang XQ, Guo CC, et al. A phase l study of a tumor-targeted systemic nanodelivery system, SGT-94, in genitourinary cancers. Mol Ther. 2016;24(8):1484–1491.
  • Pan XQ, Gong YC, Li ZL, et al. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int J Biol Macromol. 2019;139:377–386.
  • Xiong XY, Tam KC, Gan LH. Synthesis and aggregation behavior of pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. Macromolecules. 2003;36(26):9979–9985.
  • Li ZL, Xiong XY, Li YP, et al. Synthesis and self-assembling behaviors of biotinylated pluronic/poly(lactic acid) biocompatible block copolymers in aqueous solutions. J Appl Polym Sci. 2010;115(3):1573–1580.
  • Zhang W, Yu ZL, Wu M, et al. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano. 2017;11(1):277–290.
  • Xiong XY, Pan X, Tao L, et al. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel. Int J Biol Macromol. 2017;103:1011–1018.
  • Chen YC, Chiang CF, Chen LF, et al. Polymersomes conjugated with des-octanoyl ghrelin for the delivery of therapeutic and imaging agents into brain tissues. Biomaterials. 2014;35(6):2051–2065.
  • Liu Y, Wang H, Tang M, et al. Hierarchically targetable fiber rods decorated with dual targeting ligands and detachable zwitterionic coronas. Acta Biomater. 2020;110:231–241.
  • Jelonek K, Zajdel A, Wilczok A, et al. Dual-targeted biodegradable micelles for anticancer drug delivery. Mater Lett. 2019;241:187–189.
  • Yan Y, Dong Y, Yue S, et al. Dually active targeting nanomedicines based on a direct conjugate of two purely natural ligands for potent chemotherapy of ovarian tumors. ACS Appl Mater Interfaces. 2019;11(50):46548–46557.
  • Liu Y, Li K, Pan J, et al. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials. 2010;31(2):330–338.
  • Liu W, Lin Q, Fu Y, et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J Control Release. 2020;323:191–202.
  • Sriraman SK, Salzano G, Sarisozen C, et al. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm. 2016;105:40–49.
  • Zhi D, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34.
  • Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.
  • Kang B, Chang S, Dai Y, et al. Cell response to carbon nanotubes: size-dependent intracellular uptake mechanism and subcellular fate. Small. 2010;6(21):2362–2366.
  • Chen Q, Liu J. Transferrin and folic acid co-modified bufalin-loaded nanoliposomes: preparation, characterization, and application in anticancer activity. Int J Nanomedicine. 2018;13:6009–6018.
  • Sandhu D, Pudussery MV, Kaundal R, Suarez DL, et al. Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula. Funct Integr Genomics. 2018;18(2):141–153.
  • Grinstein S, Cohen S, Goetz JD, et al. Characterization of the activation of Na+/H+ exchange in lymphocytes by phorbol esters: change in cytoplasmic pH dependence of the antiport. Proc Natl Acad Sci USA. 1985;82(5):1429–1433.
  • Liu Y, Sun J, Cao W, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421(1):160–169.
  • Farsi Z, Gowrisankaran S, Krunic M, et al. Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity. ELife. 2018;7:e32569.
  • Wilhelm LP, Voilquin L, Kobayashi T, et al. Intracellular and plasma membrane cholesterol labeling and quantification using filipin and GFP-D4. Methods Mol Biol. 2019;1949:137–152.
  • Wang Y, Zhao Z, Wei F, et al. Combining autophagy-inducing peptides and brefeldin a delivered by perinuclear-localized mesoporous silica nanoparticles: a manipulation strategy for ER-phagy. Nanoscale. 2018;10(18):8796–8805.
  • Yu RY, Xing L, Cui PF, et al. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and brefeldin a for suppression of tumor metastasis. Biomater Sci. 2018;6(8):2144–2155.
  • Pohlmann R, Kruger S, Hasilik A, et al. Effect of monensin on intracellular transport and receptor-mediated endocytosis of lysosomal enzymes. Biochem J. 1984;217(3):649–658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.